37,934 research outputs found
Strain-dependent solid surface stress and the stiffness of soft contacts
Surface stresses have recently emerged as a key player in the mechanics of
highly compliant solids. The classic theories of contact mechanics describe
adhesion with a compliant substrate as a competition between surface energies
driving deformation to establish contact and bulk elasticity resisting this.
However, it has recently been shown that surface stresses provide an additional
restoring force that can compete with and even dominate over elasticity in
highly compliant materials, especially when length scales are small compared to
the ratio of the surface stress to the elastic modulus, . Here, we
investigate experimentally the contribution of surface stresses to the force of
adhesion. We find that the elastic and capillary contributions to the adhesive
force are of similar magnitude, and that both are required to account for
measured adhesive forces between rigid silica spheres and compliant, silicone
gels. Notably, the strain-dependence of the solid surface stress contributes
significantly to the stiffness of soft solid contacts.Comment: 6 pages, 3 figure
Tunable effective g-factor in InAs nanowire quantum dots
We report tunneling spectroscopy measurements of the Zeeman spin splitting in
InAs few-electron quantum dots. The dots are formed between two InP barriers in
InAs nanowires with a wurtzite crystal structure grown by chemical beam
epitaxy. The values of the electron g-factors of the first few electrons
entering the dot are found to strongly depend on dot size and range from close
to the InAs bulk value in large dots |g^*|=13 down to |g^*|=2.3 for the
smallest dots. These findings are discussed in view of a simple model.Comment: 4 pages, 3 figure
Transverse Asymmetry A_T′ from the Quasielastic ^3He(e,e′) Process and the Neutron Magnetic Form Factor
We have measured the transverse asymmetry A_T′ in ^3He(e,e′) quasielastic scattering in Hall A at Jefferson Laboratory with high precision for Q^2 values from 0.1 to 0.6 (GeV/c)^2. The neutron magnetic form factor GMn was extracted based on Faddeev calculations for Q^2 = 0.1 and 0.2 (GeV/c)^2 with an experimental uncertainty of less than 2%
Plane-wave impulse approximation extraction of the neutron magnetic form factor from quasielastic ^3He(e,e') at Q^2=0.3 to 0.6 (GeV/c)^2
A high precision measurement of the transverse spin-dependent asymmetry A_T' in ^3He(e,e') quasielastic
scattering was performed in Hall A at Jefferson Lab at values of the squared four-momentum transfer, Q^2,
between 0.1 and 0.6 (GeV/c)^2. A_(T') is sensitive to the neutron magnetic form factor, G_M^n . Values of G_M^n at
Q^2 = 0.1 and 0.2 (GeV/c)^2, extracted using Faddeev calculations, were reported previously. Here, we report
the extraction of G_M^n for the remaining Q^2 values in the range from 0.3 to 0.6 (GeV/c)^2 using a plane-wave
impulse approximation calculation. The results are in good agreement with recent precision data from experiments
using a deuterium target
Investigation of resonant and transient phenomena in Josephson junction flux qubits
We present an analytical and computational study of resonances and transient
responses in a classical Josephson junction system. A theoretical basis for
resonances in a superconducting loop with three junctions is presented,
outlining both the direct relationship between the dynamics of single- and
multi-junction systems, and the direct relationships between observations of
the classical counterparts to Rabi oscillations, Ramsey fringes, and spin echo
oscillations in this class of systems. We show simulations data along with
analytical analyses of the classical model, and the results are related to
previously reported experiments conducted on three junction loops. We further
investigate the effect of off-resonant microwave perturbations to, e.g., the
Rabi-type response of the Josephson system, and we relate this response back to
the nonlinear and multi-valued resonance behavior previously reported for a
single Josephson junction. The close relationships between single and
multi-junction behavior demonstrates the underlying dynamical mechanism for a
whole class of classical counterparts to expected quantum mechanical
observations in a variety of systems; namely the resonant and transient
behavior of a particle in an anharmonic potential well with subsequent escape.Comment: 11 pages, seven figure
Scattering into Cones and Flux across Surfaces in Quantum Mechanics: a Pathwise Probabilistic Approach
We show how the scattering-into-cones and flux-across-surfaces theorems in
Quantum Mechanics have very intuitive pathwise probabilistic versions based on
some results by Carlen about large time behaviour of paths of Nelson
diffusions. The quantum mechanical results can be then recovered by taking
expectations in our pathwise statements.Comment: To appear in Journal of Mathematical Physic
Current-induced noise and damping in non-uniform ferromagnets
In the presence of spatial variation of the magnetization direction, electric
current noise causes a fluctuating spin-transfer torque that increases the
fluctuations of the ferromagnetic order parameter. By the
fluctuation-dissipation theorem, the equilibrium fluctuations are related to
the magnetization damping, which in non-uniform ferromagnets acquires a
nonlocal tensor structure. In biased ferromagnets, shot noise can become the
dominant contribution to the magnetization noise at low temperatures.
Considering spin spirals as a simple example, we show that the current-induced
noise and damping is significant.Comment: 5 pages, 1 figur
Quantum noise limited and entanglement-assisted magnetometry
We study experimentally the fundamental limits of sensitivity of an atomic
radio-frequency magnetometer. First we apply an optimal sequence of state
preparation, evolution, and the back-action evading measurement to achieve a
nearly projection noise limited sensitivity. We furthermore experimentally
demonstrate that Einstein-Podolsky-Rosen (EPR) entanglement of atoms generated
by a measurement enhances the sensitivity to pulsed magnetic fields. We
demonstrate this quantum limited sensing in a magnetometer utilizing a truly
macroscopic ensemble of 1.5*10^12 atoms which allows us to achieve
sub-femtoTesla/sqrt(Hz) sensitivity.Comment: To appear in Physical Review Letters, April 9 issue (provisionally
Precision Measurement of the Spin-Dependent Asymmetry in the Threshold Region of ^3He(e, e')
We present the first precision measurement of the spin-dependent asymmetry in the threshold region of ^3He(e,e′) at Q^2 values of 0.1 and 0.2(GeV/c)^2. The agreement between the data and nonrelativistic Faddeev calculations which include both final-state interactions and meson-exchange current effects is very good at Q^2 = 0.1(GeV/c)^2, while a small discrepancy at Q^2 = 0.2(GeV/c)^2 is observed
- …