20,575 research outputs found

    New camera tube improves ultrasonic inspection system

    Get PDF
    Electron multiplier, incorporated into the camera tube of an ultrasonic imaging system, improves resolution, effectively shields low level circuits, and provides a high level signal input to the television camera. It is effective for inspection of metallic materials for bonds, voids, and homogeneity

    Shock enhancement and control of hypersonic mixing and combustion

    Get PDF
    The possibility that shock enhanced mixing can substantially increase the rate of mixing between coflowing streams of hydrogen and air has been studied in experimental and computational investigations. Early numerical computations indicated that the steady interaction between a weak shock in air with a coflowing hydrogen jet can be well approximated by the two-dimensional time-dependent interaction between a weak shock and an initially circular region filled with hydrogen imbedded in air. An experimental investigation of the latter process has been carned out in the Caltech 17 Inch Shock Tube in experiments in which the laser induced fluorescence of byacetyl dye is used as a tracer for the motion of the helium gas after shock waves have passed across the helium cylinder. The flow field has also been studied using an Euler code computation of the flow field. Both investigations show that the shock impinging process causes the light gas cylinder to split into two parts. One of these mixes rapidly with air and the other forms a stably stratified vortex pair which mixes more slowly; about 60% of the light gas mixes rapidly with the ambient fluid. The geometry of the flow field and the mixing process and scaling parameters are discussed here. The success of this program encouraged the exploration of a low drag injection system in which the basic concept of shock generated streamwise vorticity could be incorporated in an injector for a Scramjet combustor at Mach numbers between 5 and 8. The results of a substantial computational program and a description of the wind tunnel model and preliminary experimental results obtained in the High Reynolds Number Mach 6 Tunnel at NASA Langley Research Center are given here

    Healthiness from Duality

    Get PDF
    Healthiness is a good old question in program logics that dates back to Dijkstra. It asks for an intrinsic characterization of those predicate transformers which arise as the (backward) interpretation of a certain class of programs. There are several results known for healthiness conditions: for deterministic programs, nondeterministic ones, probabilistic ones, etc. Building upon our previous works on so-called state-and-effect triangles, we contribute a unified categorical framework for investigating healthiness conditions. We find the framework to be centered around a dual adjunction induced by a dualizing object, together with our notion of relative Eilenberg-Moore algebra playing fundamental roles too. The latter notion seems interesting in its own right in the context of monads, Lawvere theories and enriched categories.Comment: 13 pages, Extended version with appendices of a paper accepted to LICS 201

    Accuracy of Approximate Eigenstates

    Get PDF
    Besides perturbation theory, which requires, of course, the knowledge of the exact unperturbed solution, variational techniques represent the main tool for any investigation of the eigenvalue problem of some semibounded operator H in quantum theory. For a reasonable choice of the employed trial subspace of the domain of H, the lowest eigenvalues of H usually can be located with acceptable precision whereas the trial-subspace vectors corresponding to these eigenvalues approximate, in general, the exact eigenstates of H with much less accuracy. Accordingly, various measures for the accuracy of the approximate eigenstates derived by variational techniques are scrutinized. In particular, the matrix elements of the commutator of the operator H and (suitably chosen) different operators, with respect to degenerate approximate eigenstates of H obtained by some variational method, are proposed here as new criteria for the accuracy of variational eigenstates. These considerations are applied to that Hamiltonian the eigenvalue problem of which defines the "spinless Salpeter equation." This (bound-state) wave equation may be regarded as the most straightforward relativistic generalization of the usual nonrelativistic Schroedinger formalism, and is frequently used to describe, e.g., spin-averaged mass spectra of bound states of quarks.Comment: LaTeX, 14 pages, Int. J. Mod. Phys. A (in print); 1 typo correcte

    Finite element analysis of gradient coil deformation and vibration in NMR microscopy

    Get PDF
    Resolution degradation due to gradient coil deformation and vibration in NMR microscopy is investigated using finite element analysis. From the analysis, deformations due to the Lorentz force can be as large as 1-10 μm depending on the gradient strength and coil frame material. Thus, these deformations can be one of the major resolution limiting factors in NMR microscopy. Coil vibration, which depends on the input current waveform and resolution degradation due to time-variant deformation and time-invariant deformation are investigated by numerical simulations

    Digital Three-Dimensional Atlas of Quail Development Using High-Resolution MRI

    Get PDF
    We present an archetypal set of three-dimensional digital atlases of the quail embryo based on microscopic magnetic resonance imaging (µMRI). The atlases are composed of three modules: (1) images of fixed ex ovo quail, ranging in age from embryonic day 5 to 10 (e05 to e10); (2) a coarsely delineated anatomical atlas of the µMRI data; and (3) an organ system–based hierarchical graph linked to the anatomical delineations. The atlas is designed to be accessed using SHIVA, a free Java application. The atlas is extensible and can contain other types of information including anatomical, physiological, and functional descriptors. It can also be linked to online resources and references. This digital atlas provides a framework to place various data types, such as gene expression and cell migration data, within the normal three-dimensional anatomy of the developing quail embryo. This provides a method for the analysis and examination of the spatial relationships among the different types of information within the context of the entire embryo

    Pure phase-encoded MRI and classification of solids

    Get PDF
    Here, the authors combine a pure phase-encoded magnetic resonance imaging (MRI) method with a new tissue-classification technique to make geometric models of a human tooth. They demonstrate the feasibility of three-dimensional imaging of solids using a conventional 11.7-T NMR spectrometer. In solid-state imaging, confounding line-broadening effects are typically eliminated using coherent averaging methods. Instead, the authors circumvent them by detecting the proton signal at a fixed phase-encode time following the radio-frequency excitation. By a judicious choice of the phase-encode time in the MRI protocol, the authors differentiate enamel and dentine sufficiently to successfully apply a new classification algorithm. This tissue-classification algorithm identifies the distribution of different material types, such as enamel and dentine, in volumetric data. In this algorithm, the authors treat a voxel as a volume, not as a single point, and assume that each voxel may contain more than one material. They use the distribution of MR image intensities within each voxel-sized volume to estimate the relative proportion of each material using a probabilistic approach. This combined approach, involving MRI and data classification, is directly applicable to bone imaging and hard-tissue contrast-based modeling of biological solids
    corecore