818 research outputs found

    Hill's Equation with Random Forcing Parameters: The Limit of Delta Function Barriers

    Full text link
    This paper considers random Hill's equations in the limit where the periodic forcing function becomes a Dirac delta function. For this class of equations, the forcing strength qkq_k, the oscillation frequency \af_k, and the period are allowed to vary from cycle to cycle. Such equations arise in astrophysical orbital problems in extended mass distributions, in the reheating problem for inflationary cosmologies, and in periodic Schr{\"o}dinger equations. The growth rates for solutions to the periodic differential equation can be described by a matrix transformation, where the matrix elements vary from cycle to cycle. Working in the delta function limit, this paper addresses several coupled issues: We find the growth rates for the 2×22 \times 2 matrices that describe the solutions. This analysis is carried out in the limiting regimes of both large qk1q_k \gg 1 and small qk1q_k \ll 1 forcing strength parameters. For the latter case, we present an alternate treatment of the dynamics in terms of a Fokker-Planck equation, which allows for a comparison of the two approaches. Finally, we elucidate the relationship between the fundamental parameters (\af_k,q_k) appearing in the stochastic differential equation and the matrix elements that specify the corresponding discrete map. This work provides analytic -- and accurate -- expressions for the growth rates of these stochastic differential equations in both the qk1q_k \gg1 and the qk1q_k \ll 1 limits.Comment: 29 pages, 3 figures, accepted to Journal of Mathematical Physic

    The Effect of the Outer Lindblad Resonance of the Galactic Bar on the Local Stellar Velocity Distribution

    Full text link
    Hydro-dynamical modeling of the inner Galaxy suggest that the radius of the outer Lindblad resonance (OLR) of the Galactic bar lies in the vicinity of the Sun. How does this resonance affect the distribution function in the outer parts of a barred disk, and can we identify any effect of the resonance in the velocity distribution f(v) actually observed in the solar neighborhood? To answer these questions, detailed simulations of f(v) in the outer parts of an exponential stellar disks with nearly flat rotation curves and a rotating central bar have been performed. For a model resembling the old stellar disk, the OLR causes a distinct feature in f(v) over a significant fraction of the outer disk. For positions <2kpc outside the OLR radius and at bar angles of \~10-70 degrees, f(v) inhibits a bi-modality between the low-velocity stars moving like the local standard of rest (LSR) and a secondary mode of stars predominantly moving outward and rotating more slowly than the LSR. Such a bi-modality is indeed present in f(v) inferred from the Hipparcos data for late-type stars in the solar neighborhood. If one interpretes this observed bi-modality as induced by the OLR -- and there are hardly any viable alternatives -- then one is forced to deduce that the OLR radius is slightly smaller than Ro. Moreover, by a quantitative comparison of the observed with the simulated distributions one finds that the pattern speed of the bar is 1.85+/-0.15 times the local circular frequency, where the error is dominated by the uncertainty in bar angle and local circular speed. Also other, less prominent but still significant, features in the observed f(v) resemble properties of the simulated velocity distributions, in particular a ripple caused by orbits trapped in the outer 1:1 resonance.Comment: 14 pages, 10 figures (Fig.2 in full resolution available upon request), accepted for publication in A

    Tidally Compressed Gas in Centers of Early Type and Ultraluminous Galaxies

    Get PDF
    In this paper we propose that the compressive tidal field in the centers of flat-core early type galaxies and ultraluminous galaxies compresses molecular clouds producing dense gas obseved in the centers of these galaxies. The effect of galactic tidal fields is usually considered disruptive in the literature. However, for some galaxies, the mass profile flattens towards the center and the resulting galactic tidal field is not disruptive but instead it is compressive within the flat-core region. We have used the virial theorem to determine the minimum density of a molecular cloud to be stable and gravitationally bound within the tidally compressive region of a galaxy. We have applied the mechanism to determine the mean molecular cloud densities in the centers of a sample of flat-core, early-type galaxies and ultraluminous galaxies.Comment: 18 latex pages and uses aaspp4.sty, accepted for publication in Astrophysical Journa

    Milky Way Mass Models and MOND

    Full text link
    Using the Tuorla-Heidelberg model for the mass distribution of the Milky Way, I determine the rotation curve predicted by MOND. The result is in good agreement with the observed terminal velocities interior to the solar radius and with estimates of the Galaxy's rotation curve exterior thereto. There are no fit parameters: given the mass distribution, MOND provides a good match to the rotation curve. The Tuorla-Heidelberg model does allow for a variety of exponential scale lengths; MOND prefers short scale lengths in the range 2.0 to 2.5 kpc. The favored value of scale length depends somewhat on the choice of interpolation function. There is some preference for the `simple' interpolation function as found by Famaey & Binney. I introduce an interpolation function that shares the advantages of the simple function on galaxy scales while having a much smaller impact in the solar system. I also solve the inverse problem, inferring the surface mass density distribution of the Milky Way from the terminal velocities. The result is a Galaxy with `bumps and wiggles' in both its luminosity profile and rotation curve that are reminiscent of those frequently observed in external galaxies.Comment: Accepted for publication in the Astrophysical Journal. 31 pages including 8 figures and 3 table

    Triaxial orbit based galaxy models with an application to the (apparent) decoupled core galaxy NGC 4365

    Full text link
    We present a flexible and efficient method to construct triaxial dynamical models of galaxies with a central black hole, using Schwarzschild's orbital superposition approach. Our method is general and can deal with realistic luminosity distributions, which project to surface brightness distributions that may show position angle twists and ellipticity variations. The models are fit to measurements of the full line-of-sight velocity distribution (wherever available). We verify that our method is able to reproduce theoretical predictions of a three-integral triaxial Abel model. In a companion paper (van de Ven, de Zeeuw & van den Bosch), we demonstrate that the method recovers the phase-space distribution function. We apply our method to two-dimensional observations of the E3 galaxy NGC 4365, obtained with the integral-field spectrograph SAURON, and study its internal structure, showing that the observed kinematically decoupled core is not physically distinct from the main body and the inner region is close to oblate axisymmetric.Comment: 21 Pages, 14 (Colour) Figures, Companion paper is arXiv:0712.0309 Accepted to MNRAS. Full resolution version at http://www.strw.leidenuniv.nl/~bosch/papers/RvdBosch_triaxmethod.pd

    Cosmological Parameters from Observations of Galaxy Clusters

    Full text link
    Studies of galaxy clusters have proved crucial in helping to establish the standard model of cosmology, with a universe dominated by dark matter and dark energy. A theoretical basis that describes clusters as massive, multi-component, quasi-equilibrium systems is growing in its capability to interpret multi-wavelength observations of expanding scope and sensitivity. We review current cosmological results, including contributions to fundamental physics, obtained from observations of galaxy clusters. These results are consistent with and complementary to those from other methods. We highlight several areas of opportunity for the next few years, and emphasize the need for accurate modeling of survey selection and sources of systematic error. Capitalizing on these opportunities will require a multi-wavelength approach and the application of rigorous statistical frameworks, utilizing the combined strengths of observers, simulators and theorists.Comment: 53 pages, 21 figures. To appear in Annual Review of Astronomy & Astrophysic

    Halo Geometry and Dark Matter Annihilation Signal

    Full text link
    We study the impact of the halo shape and geometry on the expected weakly interacting massive particle (WIMP) dark matter annihilation signal from the galactic center. As the halo profile in the innermost region is still poorly constrained, we consider different density behaviors like flat cores, cusps and spikes, as well as geometrical distortions. We show that asphericity has a strong impact on the annihilation signal when the halo profile near the galactic center is flat, but becomes gradually less significant for cuspy profiles, and negligible in the presence of a central spike. However, the astrophysical factor is strongly dependent on the WIMP mass and annihilation cross-section in the latter case.Comment: 5 pages, 4 figures, PR

    The properties of the Galactic bar implied by gas kinematics in the inner Milky Way

    Full text link
    Longitude-velocity (l-V) diagrams of H I and CO gas in the inner Milky Way have long been known to be inconsistent with circular motion in an axisymmetric potential. Several lines of evidence suggest that the Galaxy is barred, and gas flow in a barred potential could be consistent with the observed ``forbidden'' velocities and other features in the data. We compare the H I observations to l-V diagrams synthesized from 2-D fluid dynamical simulations of gas flows in a family of barred potentials. The gas flow pattern is very sensitive to the parameters of the assumed potential, which allows us to discriminate among models. We present a model that reproduces the outer contour of the H I l-V diagram reasonably well; this model has a strong bar with a semimajor axis of 3.6 kpc, an axis ratio of approximately 3:1, an inner Lindblad resonance (ILR), and a pattern speed of 42 km/s/kpc, and matches the data best when viewed from 34\deg to the bar major axis. The behavior of the models, combined with the constraint that the shocks in the Milky Way bar should resemble those in external barred galaxies, leads us to conclude that wide ranges of parameter space are incompatible with the observations. In particular we suggest that the bar must be fairly strong, must have an ILR, and cannot be too end-on, with the bar major axis at 35\deg +/- 5\deg to the line of sight. The H I data exhibit larger forbidden velocities over a wider longitude range than are seen in molecular gas; this important difference is the reason our favored model differs so significantly from other recently proposed models.Comment: 23 pages, 14 figures, 1 table, uses emulateapj and psfig, 640 kb. Submitted to Ap

    Non-linear Evolution of f(R) Cosmologies III: Halo Statistics

    Full text link
    The statistical properties of dark matter halos, the building blocks of cosmological observables associated with structure in the universe, offer many opportunities to test models for cosmic acceleration, especially those that seek to modify gravitational forces. We study the abundance, bias and profiles of halos in cosmological simulations for one such model: the modified action f(R) theory. In the large field regime that is accessible to current observations, enhanced gravitational forces raise the abundance of rare massive halos and decrease their bias but leave their (lensing) mass profiles largely unchanged. This regime is well described by scaling relations based on a modification of spherical collapse calculations. In the small field regime, enhanced forces are suppressed inside halos and the effects on halo properties are substantially reduced for the most massive halos. Nonetheless, the scaling relations still retain limited applicability for the purpose of establishing conservative upper limits on the modification to gravity.Comment: 12 pages, 10 figures; v2: revised version accepted by Phys. Rev.

    SPH Simulations of Galactic Gaseous Disk with Bar: Distribution and Kinematic Structure of Molecular Clouds toward the Galactic Center

    Get PDF
    We have performed Smoothed Particle Hydrodynamic (SPH) simulations to study the response of molecular clouds in the Galactic disk to a rotating bar and their subsequent evolution in the Galactic Center (GC) region. The Galactic potential in our models is contributed by three axisymmetric components (massive halo, exponential disk, compact bulge) and a non-axisymmetric bar. These components are assumed to be invariant in time in the frame corotating with the bar. Some noticeable features such as an elliptical outer ring, spiral arms, a gas-depletion region, and a central concentration have been developed due to the influence of the bar. The rotating bar induces non-circular motions of the SPH particles, but hydrodynamic collisions tend to suppress the random components of the velocity. The velocity field of the SPH particles is consistent with the kinematics of molecular clouds observed in HCN (1-0) transition; these clouds are thought to be very dense clouds. However, the l-v diagram of the clouds traced by CO is quite different from that of our SPH simulation, being more similar to that obtained from simulations using collisionless particles. The lvl-v diagram of a mixture of collisional and collisionless particles gives better reproduction of the kinematic structures of the GC clouds observed in the CO line. The fact that the kinematics of HCN clouds can be reproduced by the SPH particles suggests that the dense clouds in the GC are formed via cloud collisions induced by rotating bar.Comment: 31 pages, 10 pigures, accepted for publication in Ap
    corecore