7,169 research outputs found

    The Skylab concentrated atmospheric radiation project

    Get PDF
    The author has identified the following significant results. Comparison of several existing infrared radiative transfer models under somewhat controlled conditions and with atmospheric observations of Skylab's S191 and S192 radiometers illustrated that the models tend to over-compute atmospheric attenuation in the window region of the atmospheric infrared spectra

    Tangled Nature: A model of emergent structure and temporal mode among co-evolving agents

    Full text link
    Understanding systems level behaviour of many interacting agents is challenging in various ways, here we'll focus on the how the interaction between components can lead to hierarchical structures with different types of dynamics, or causations, at different levels. We use the Tangled Nature model to discuss the co-evolutionary aspects connecting the microscopic level of the individual to the macroscopic systems level. At the microscopic level the individual agent may undergo evolutionary changes due to mutations of strategies. The micro-dynamics always run at a constant rate. Nevertheless, the system's level dynamics exhibit a completely different type of intermittent abrupt dynamics where major upheavals keep throwing the system between meta-stable configurations. These dramatic transitions are described by a log-Poisson time statistics. The long time effect is a collectively adapted of the ecological network. We discuss the ecological and macroevolutionary consequences of the adaptive dynamics and briefly describe work using the Tangled Nature framework to analyse problems in economics, sociology, innovation and sustainabilityComment: Invited contribution to Focus on Complexity in European Journal of Physics. 25 page, 1 figur

    Editorial : environmental governance of urban and regional development – scales and sectors, conflict and cooperation

    Get PDF
    Recent years have continued to see a concern for the detrimental environmental impacts of human economic activities particularly in the form of enhanced global warming, sea level rise, land degradation and deforestation. Although it can be argued that economic development and growth remain the priority for governments at a variety of spatial scales or levels, these same governments also express a desire through a growing number of policy initiatives to make such development more sustainable and environmentally-friendly. A growing interest amongst policy makers has been in identifying the ways in which environmental protection measures can be made complementary to economic development aims. Rather than seeing the environment and the economy in opposition, there has been a focus on the growth potential from developing a green or low-carbon economy (OECD, 2011). At the urban and regional scale governments have increasingly begun to try and position themselves as destinations for new forms of green economy investments as a source of a new round of capital accumulation (GIBBS and O’NEILL, 2014). In total then, questions around the environment, climate change and sustainability look set to grow in importance for decision makers in cities and regions

    Convex domains of Finsler and Riemannian manifolds

    Full text link
    A detailed study of the notions of convexity for a hypersurface in a Finsler manifold is carried out. In particular, the infinitesimal and local notions of convexity are shown to be equivalent. Our approach differs from Bishop's one in his classical result (Bishop, Indiana Univ Math J 24:169-172, 1974) for the Riemannian case. Ours not only can be extended to the Finsler setting but it also reduces the typical requirements of differentiability for the metric and it yields consequences on the multiplicity of connecting geodesics in the convex domain defined by the hypersurface.Comment: 22 pages, AMSLaTex. Typos corrected, references update

    Wave Function Structure in Two-Body Random Matrix Ensembles

    Full text link
    We study the structure of eigenstates in two-body interaction random matrix ensembles and find significant deviations from random matrix theory expectations. The deviations are most prominent in the tails of the spectral density and indicate localization of the eigenstates in Fock space. Using ideas related to scar theory we derive an analytical formula that relates fluctuations in wave function intensities to fluctuations of the two-body interaction matrix elements. Numerical results for many-body fermion systems agree well with the theoretical predictions.Comment: 4 pages, 2 figure

    Biomolecular imaging and electronic damage using X-ray free-electron lasers

    Full text link
    Proposals to determine biomolecular structures from diffraction experiments using femtosecond X-ray free-electron laser (XFEL) pulses involve a conflict between the incident brightness required to achieve diffraction-limited atomic resolution and the electronic and structural damage induced by the illumination. Here we show that previous estimates of the conditions under which biomolecular structures may be obtained in this manner are unduly restrictive, because they are based on a coherent diffraction model that is not appropriate to the proposed interaction conditions. A more detailed imaging model derived from optical coherence theory and quantum electrodynamics is shown to be far more tolerant of electronic damage. The nuclear density is employed as the principal descriptor of molecular structure. The foundations of the approach may also be used to characterize electrodynamical processes by performing scattering experiments on complex molecules of known structure.Comment: 16 pages, 2 figure
    • …
    corecore