7 research outputs found

    Comparative Experiment on the Use of Unmanned and Ground-Based Technologies of Fertilizer and Crop Protection Products on Winter Barley

    Get PDF
    The results of a comparative experiment of the use of an agricultural drone Agras T10 and ground agricultural machines (Amazone ZA-X Perfect fertilizer spreader, Amazone UF-901 sprayer) for the application of nitrogen fertilizers and plant protection products (herbicides, insecticides and fungicides treatment) are presented. Yield of experimental and control plots, economic efficiency of unmanned and ground technologies are determined. Calculation of economic efficiency of unmanned technology showed that its productivity is 4 times less. While using this technology with differentiated fertilizer application the winter barley yield increased by 3,6% while the amount of fertilizer application decreased by 2%. Consumption of fuel and lubricants decreased by 1.4 times, metal consumption by 26.7 times

    Study of Cane Dimensional Characteristics to Justify Sprayer Parameters

    Get PDF
    Based on the study of dimensional characteristics of reeds, a sprayer is proposed for the treatment of panicles of reeds growing in the elements of the irrigation system of rice checks. The boom of the offered sprayer has an original shape, sprayers of which are located along the trajectory of a parabola, taking into account the placement of the upper points of the panicles across the width of the channel and equipped with a protective chamber device, made in the form of an Archimedes spiral with a spiral pitch equal to at least 20 cm, the offset of the spiral center from the axis of the spraying nozzle vertically is equal to the spiral pitch 20 cm, and from the location of the spraying nozzle to the bottom treatment zone of panicles 40 cm

    Π Π΅ΡΡƒΡ€ΡΠΎΡΠ±Π΅Ρ€Π΅Π³Π°ΡŽΡ‰ΠΈΠ΅ ΠΌΠ°ΡˆΠΈΠ½Π½Ρ‹Π΅ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ Ρ€Π΅ΠΆΠΈΠΌΡ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΊΡƒΠΊΡƒΡ€ΡƒΠ·ΠΎΡƒΠ±ΠΎΡ€ΠΎΡ‡Π½Ρ‹Ρ… машин

    Get PDF
    Russian agrarian can increase corn production and not depend on import if they get more yield and reduce losses at all stages of a harvest cycle. A unified complex of modern highly effective, resource-saving technologies and technical means of harvesting and postharvest processing of corn is for this purpose necessary. The authors offered a concept of multilevel system approach to interconnected functioning of all subsystems of corn production (from harvesting to crop processing and storage) by criterion of resource-saving. Resource-saving technologies of harvesting of ear corn with thresh in a field and with getting of corn and corn cob mix. The minimum of cumulative expenses of energy when harvesting ear corn (1005.3 megajoule per tonne) is provided by technology with use of a self-propelled picker-husker. For harvesting with ear corn thresh in the field the rational technology (724.4 megajoule per tonne) includes harvesting by the combine with an axial and rotor threshing mechanism on the basis of new constructive and technological decisions. The most effective technology is corn harvesting with use on a forage corn and corn cob mix (638.5 megajoule per tonne). The authors developed a block scheme and mathematical model of optimization of parameters and operating modes of technical means. As a result of optimization modernization of the corn harvester provided decrease in energy consumption from 260.4 to 228.2 megajoule per tonne, or by 12.4 percent; increase of combine capacity from 3.4 to 4.6 ha/h, or by 1,4 times, improvement of grain output Π°ΠΊΡ‰ΡŒ 12.3 to 14.7 kg/s, or by 1.2 times. Optimum parameters of the unit: width of capture of a harvester made 8.4 m, the working speed of the movement - 6,6 km/h, the mass of the combine - 18180 kg, engine capacity - 224.8 kW, optimum terms of harvesting of grain corn - 8 days.Π£Π²Π΅Π»ΠΈΡ‡ΠΈΡ‚ΡŒ производство ΠΊΡƒΠΊΡƒΡ€ΡƒΠ·Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ, Ссли ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ Π΅Π΅ ΡƒΡ€ΠΎΠΆΠ°ΠΉΠ½ΠΎΡΡ‚ΡŒ ΠΈ ΡΠ½ΠΈΠ·ΠΈΡ‚ΡŒ ΠΏΠΎΡ‚Π΅Ρ€ΠΈ Π½Π° всСх этапах ΡƒΠ±ΠΎΡ€ΠΎΡ‡Π½ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Π°. Для этого Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ соврСмСнныС высокоэффСктивныС Ρ€Π΅ΡΡƒΡ€ΡΠΎΡΠ±Π΅Ρ€Π΅Π³Π°ΡŽΡ‰ΠΈΠ΅ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ тСхничСскиС срСдства ΡƒΠ±ΠΎΡ€ΠΊΠΈ ΠΈ послСуборочной ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΊΡƒΠΊΡƒΡ€ΡƒΠ·Ρ‹ Π² Π΅Π΄ΠΈΠ½ΠΎΠΌ комплСксС. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠΈΠ»ΠΈ ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΡŽ ΠΌΠ½ΠΎΠ³ΠΎΡƒΡ€ΠΎΠ²Π½Π΅Π²ΠΎΠ³ΠΎ систСмного ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° ΠΊ взаимоувязанному Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ всСх подсистСм производствСнных процСссов Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ ΠΊΡƒΠΊΡƒΡ€ΡƒΠ·Ρ‹ (ΠΎΡ‚ ΡƒΠ±ΠΎΡ€ΠΊΠΈ Π΄ΠΎ ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈ хранСния уроТая) ΠΏΠΎ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΡŽ рСсурсосбСрСТСния. Обосновали Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ примСнСния Ρ€Π΅ΡΡƒΡ€ΡΠΎΡΠ±Π΅Ρ€Π΅Π³Π°ΡŽΡ‰ΠΈΡ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ ΡƒΠ±ΠΎΡ€ΠΊΠΈ ΠΊΡƒΠΊΡƒΡ€ΡƒΠ·Ρ‹ Π² ΠΏΠΎΡ‡Π°Ρ‚ΠΊΠ°Ρ… с ΠΈΡ… ΠΎΠ±ΠΌΠΎΠ»ΠΎΡ‚ΠΎΠΌ Π² ΠΏΠΎΠ»Π΅ ΠΈ с ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ зСрностСрТнСвой смСси. Выявили, Ρ‡Ρ‚ΠΎ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌ совокупных Π·Π°Ρ‚Ρ€Π°Ρ‚ энСргии ΠΏΡ€ΠΈ ΡƒΠ±ΠΎΡ€ΠΊΠ΅ ΠΊΡƒΠΊΡƒΡ€ΡƒΠ·Ρ‹ Π² ΠΏΠΎΡ‡Π°Ρ‚ΠΊΠ°Ρ… (1005,3 ΠœΠ”ΠΆ/Ρ‚) обСспСчиваСт тСхнология с использованиСм самоходного ΠΏΠΈΠΊΠΊΠ΅Ρ€-хСскСра. Показали, Ρ‡Ρ‚ΠΎ для ΡƒΠ±ΠΎΡ€ΠΊΠΈ ΠΊΡƒΠΊΡƒΡ€ΡƒΠ·Ρ‹ с ΠΎΠ±ΠΌΠΎΠ»ΠΎΡ‚ΠΎΠΌ ΠΏΠΎΡ‡Π°Ρ‚ΠΊΠΎΠ² Π² ΠΏΠΎΠ»Π΅ (724,4 ΠœΠ”ΠΆ/Ρ‚) Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ тСхнология Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ ΡƒΠ±ΠΎΡ€ΠΊΡƒ ΠΊΠΎΠΌΠ±Π°ΠΉΠ½ΠΎΠΌ с аксиально-Ρ€ΠΎΡ‚ΠΎΡ€Π½Ρ‹ΠΌ ΠΌΠΎΠ»ΠΎΡ‚ΠΈΠ»ΡŒΠ½ΠΎ-ΡΠ΅ΠΏΠ°Ρ€ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌ устройством Π½Π° Π±Π°Π·Π΅ Π½ΠΎΠ²Ρ‹Ρ… конструктивно-тСхнологичСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ. Выявили Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΡƒΡŽ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΡŽ ΠΏΡ€ΠΈ ΡƒΠ±ΠΎΡ€ΠΊΠ΅ ΠΊΡƒΠΊΡƒΡ€ΡƒΠ·Ρ‹ - с использованиСм Π½Π° ΠΊΠΎΡ€ΠΌ зСрностСрТнСвой смСси (638,5 ΠœΠ”ΠΆ/Ρ‚). Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π»ΠΈ ΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½ΡƒΡŽ схСму ΠΈ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ модСль ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΈ Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² Ρ€Π°Π±ΠΎΡ‚Ρ‹ тСхничСских срСдств. Установили, Ρ‡Ρ‚ΠΎ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ модСрнизация ΠΊΡƒΠΊΡƒΡ€ΡƒΠ·ΠΎΡƒΠ±ΠΎΡ€ΠΎΡ‡Π½ΠΎΠ³ΠΎ Π°Π³Ρ€Π΅Π³Π°Ρ‚Π° обСспСчила сниТСниС энСргозатрат с 260,4 Π΄ΠΎ 228,2 ΠœΠ”ΠΆ/Ρ‚, ΠΈΠ»ΠΈ Π½Π° 12,4 ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚Π°; ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊΠΎΠΌΠ±Π°ΠΉΠ½Π° - с 3,4 Π΄ΠΎ 4,6 Π³Π°/Ρ‡, ΠΈΠ»ΠΈ Π² 1,4 Ρ€Π°Π·Π°, пропускной способности - с 12,3 Π΄ΠΎ 14,7 ΠΊΠ³/с, ΠΈΠ»ΠΈ Π² 1,2 Ρ€Π°Π·Π°. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠ»ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π°Π³Ρ€Π΅Π³Π°Ρ‚Π°: ΡˆΠΈΡ€ΠΈΠ½Π° Π·Π°Ρ…Π²Π°Ρ‚Π° ΠΆΠ°Ρ‚ΠΊΠΈ составила 8,4 ΠΌ, рабочая ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ двиТСния - 6,6 ΠΊΠΌ/Ρ‡, масса ΠΊΠΎΠΌΠ±Π°ΠΉΠ½Π° - 18180 ΠΊΠ³, ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ двигатСля - 224,8 ΠΊΠ’Ρ‚, ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ сроки ΡƒΠ±ΠΎΡ€ΠΊΠΈ ΠΊΡƒΠΊΡƒΡ€ΡƒΠ·Ρ‹ Π½Π° Π·Π΅Ρ€Π½ΠΎ - 8 Π΄Π½Π΅ΠΉ

    Comparative Experiment on the Use of Unmanned and Ground-Based Technologies of Fertilizer and Crop Protection Products on Winter Barley

    No full text
    The results of a comparative experiment of the use of an agricultural drone Agras T10 and ground agricultural machines (Amazone ZA-X Perfect fertilizer spreader, Amazone UF-901 sprayer) for the application of nitrogen fertilizers and plant protection products (herbicides, insecticides and fungicides treatment) are presented. Yield of experimental and control plots, economic efficiency of unmanned and ground technologies are determined. Calculation of economic efficiency of unmanned technology showed that its productivity is 4 times less. While using this technology with differentiated fertilizer application the winter barley yield increased by 3,6% while the amount of fertilizer application decreased by 2%. Consumption of fuel and lubricants decreased by 1.4 times, metal consumption by 26.7 times

    Π‘omparative tests of differentiated fertilizer application for wheat using task cards and nitrogen scanner

    No full text
    In the training and experimental farm of the Kuban State Agrarian University Krasnodarskoe from February 19 to July 6, 2020, an experiment was conducted on the comparative analysis of differentiated fertilizer application in on-line and off-line modes. The aim of the experiment was to compare the modes of differentiated application of nitrogen fertilizers (first and second top dressing) for winter wheat using task maps and GreenSeeker sensors. The calculation of economic efficiency showed that when using nitrogen scanners, fertilizers are saved on average 16 kg / ha, compared to the mode of creating task maps based on the NDVI index based on satellite data without losing grain yield and quality (gluten content increased by 2.3 %; protein content-0.6 %)

    Optimization of parameters of resource-saving machine technologies and operating modes of corn harvesters

    No full text
    Russian agrarian can increase corn production and not depend on import if they get more yield and reduce losses at all stages of a harvest cycle. A unified complex of modern highly effective, resource-saving technologies and technical means of harvesting and postharvest processing of corn is for this purpose necessary. The authors offered a concept of multilevel system approach to interconnected functioning of all subsystems of corn production (from harvesting to crop processing and storage) by criterion of resource-saving. Resource-saving technologies of harvesting of ear corn with thresh in a field and with getting of corn and corn cob mix. The minimum of cumulative expenses of energy when harvesting ear corn (1005.3 megajoule per tonne) is provided by technology with use of a self-propelled picker-husker. For harvesting with ear corn thresh in the field the rational technology (724.4 megajoule per tonne) includes harvesting by the combine with an axial and rotor threshing mechanism on the basis of new constructive and technological decisions. The most effective technology is corn harvesting with use on a forage corn and corn cob mix (638.5 megajoule per tonne). The authors developed a block scheme and mathematical model of optimization of parameters and operating modes of technical means. As a result of optimization modernization of the corn harvester provided decrease in energy consumption from 260.4 to 228.2 megajoule per tonne, or by 12.4 percent; increase of combine capacity from 3.4 to 4.6 ha/h, or by 1,4 times, improvement of grain output Π°ΠΊΡ‰ΡŒ 12.3 to 14.7 kg/s, or by 1.2 times. Optimum parameters of the unit: width of capture of a harvester made 8.4 m, the working speed of the movement - 6,6 km/h, the mass of the combine - 18180 kg, engine capacity - 224.8 kW, optimum terms of harvesting of grain corn - 8 days
    corecore