374 research outputs found

    Mesoscopic wave turbulence

    Full text link
    We report results of sumulation of wave turbulence. Both inverse and direct cascades are observed. The definition of "mesoscopic turbulence" is given. This is a regime when the number of modes in a system involved in turbulence is high enough to qualitatively simulate most of the processes but significantly smaller then the threshold which gives us quantitative agreement with the statistical description, such as kinetic equation. Such a regime takes place in numerical simulation, in essentially finite systems, etc.Comment: 5 pages, 11 figure

    Coexistence of Weak and Strong Wave Turbulence in a Swell Propagation

    Full text link
    By performing two parallel numerical experiments -- solving the dynamical Hamiltonian equations and solving the Hasselmann kinetic equation -- we examined the applicability of the theory of weak turbulence to the description of the time evolution of an ensemble of free surface waves (a swell) on deep water. We observed qualitative coincidence of the results. To achieve quantitative coincidence, we augmented the kinetic equation by an empirical dissipation term modelling the strongly nonlinear process of white-capping. Fitting the two experiments, we determined the dissipation function due to wave breaking and found that it depends very sharply on the parameter of nonlinearity (the surface steepness). The onset of white-capping can be compared to a second-order phase transition. This result corroborates with experimental observations by Banner, Babanin, Young.Comment: 5 pages, 5 figures, Submitted in Phys. Rev. Letter

    Self-similarity of wind-driven seas

    No full text
    International audienceThe results of theoretical and numerical study of the Hasselmann kinetic equation for deep water waves in presence of wind input and dissipation are presented. The guideline of the study: nonlinear transfer is the dominating mechanism of wind-wave evolution. In other words, the most important features of wind-driven sea could be understood in a framework of conservative Hasselmann equation while forcing and dissipation determine parameters of a solution of the conservative equation. The conservative Hasselmann equation has a rich family of self-similar solutions for duration-limited and fetch-limited wind-wave growth. These solutions are closely related to classic stationary and homogeneous weak-turbulent Kolmogorov spectra and can be considered as non-stationary and non-homogeneous generalizations of these spectra. It is shown that experimental parameterizations of wind-wave spectra (e.g. JONSWAP spectrum) that imply self-similarity give a solid basis for comparison with theoretical predictions. In particular, the self-similarity analysis predicts correctly the dependence of mean wave energy and mean frequency on wave age Cp / U10. This comparison is detailed in the extensive numerical study of duration-limited growth of wind waves. The study is based on algorithm suggested by Webb (1978) that was first realized as an operating code by Resio and Perrie (1989, 1991). This code is now updated: the new version is up to one order faster than the previous one. The new stable and reliable code makes possible to perform massive numerical simulation of the Hasselmann equation with different models of wind input and dissipation. As a result, a strong tendency of numerical solutions to self-similar behavior is shown for rather wide range of wave generation and dissipation conditions. We found very good quantitative coincidence of these solutions with available results on duration-limited growth, as well as with experimental parametrization of fetch-limited spectra JONSWAP in terms of wind-wave age Cp / U10

    Spine-sheath polarization structures in four active galactic nuclei jets

    Get PDF
    We present the results of multifrequency (15 + 8 + 5 GHz) polarization Very Long Baseline Array (VLBA) observations of the three BL Lacertae objects 0745 + 241, 1418 + 546 and 1652 + 398 together with 5-GHz VLBI Space Observatory Programme (VSOP) observations of 1418 + 546 and 1.6- and 5-GHz VSOP observations of the blazar 1055 + 018. The jets of all these sources have polarization structure transverse to the jet axis, with the polarization E vectors aligned with the jet along the jet spine and 'sheaths' of orthogonal E vectors at one or both edges of the jet. The presence of polarization aligned with the jet near the 'spine' may indicate that the jets are associated with helical B fields that propogate outward with the jet flow; the presence of orthogonal polarization near the edges of the jet may likewise be a consequence of a helical jet B field, or may be owing to an interaction with the ambient medium on parsec scales. We have tentatively detected interknot polarization in 1055 + 018 with E aligned with the local jet direction, consistent with the possibility that the jet of this source is associated with a helical B field

    Diffusion model of interacting gravity waves on the surface of deep fluid

    No full text
    International audienceA simple phenomenological model for nonlinear interactions of gravity waves on the surface of deep water is developed. The Snl nonlinear interaction term in the kinetic equation for wave action is replaced by the nonlinear second-order diffusion-type operator. Analytical and numerical studies show that the new model gives a reasonably good description of a real situation, consuming three order of magnitude less computer time

    Freely decaying weak turbulence for sea surface gravity waves

    Full text link
    We study numerically the generation of power laws in the framework of weak turbulence theory for surface gravity waves in deep water. Starting from a random wave field, we let the system evolve numerically according to the nonlinear Euler equations for gravity waves in infinitely deep water. In agreement with the theory of Zakharov and Filonenko, we find the formation of a power spectrum characterized by a power law of the form of ∣k∣−2.5|{\bf k}|^{-2.5}.Comment: 4 pages, 3 figure
    • …
    corecore