78 research outputs found

    A Lorentz-invariant look at quantum clock synchronization protocols based on distributed entanglement

    Full text link
    Recent work has raised the possibility that quantum information theory techniques can be used to synchronize atomic clocks nonlocally. One of the proposed algorithms for quantum clock synchronization (QCS) requires distribution of entangled pure singlets to the synchronizing parties. Such remote entanglement distribution normally creates a relative phase error in the distributed singlet state which then needs to be purified asynchronously. We present a fully relativistic analysis of the QCS protocol which shows that asynchronous entanglement purification is not possible, and, therefore, that the proposed QCS scheme remains incomplete. We discuss possible directions of research in quantum information theory which may lead to a complete, working QCS protocol.Comment: 5 pages; typeset in RevTe

    Lambda's, V's and optimal cloning with stimulated emission

    Full text link
    We show that optimal universal cloning of the polarization state of photons can be achieved via stimulated emission in three-level systems, both of the Lambda and the V type. We establish the equivalence of our systems with coupled harmonic oscillators, which permits us to analyze the structure of the cloning transformations realized. These transformations are shown to be equivalent to the optimal cloning transformations for qubits discovered by Buzek and Hillery, and Gisin and Massar. The down-conversion cloner discovered previously by some of the authors is obtained as a limiting case. We demonstrate an interesting equivalence between systems of Lambda atoms and systems of pairwise entangled V atoms. Finally we discuss the physical differences between our photon cloners and the qubit cloners considered previously and prove that the bounds on the fidelity of the clones derived for qubits also apply in our situation.Comment: 10 page

    On Multiparticle Entanglement via Resonant Interaction between Light and atomic Ensembles

    Full text link
    Multiparticle entangled states generated via interaction between narrow-band light and an ensemble of identical two-level atoms are considered. Depending on the initial photon statistics, correlation between atoms and photons can give rise to entangled states of these systems. It is found that the state of any pair of atoms interacting with weak single-mode squeezed light is inseparable and robust against decay. Optical schemes for preparing entangled states of atomic ensembles by projective measurement are described.Comment: 11 pages, 1 figure, revtex

    Atomic micromotion and geometric forces in a triaxial magnetic trap

    Get PDF
    Non-adiabatic motion of Bose-Einstein condensates of rubidium atoms arising from the dynamical nature of a time-orbiting-potential (TOP) trap was observed experimentally. The orbital micromotion of the condensate in velocity space at the frequency of the rotating bias field of the TOP was detected by a time-of-flight method. A dependence of the equilibrium position of the atoms on the sense of rotation of the bias field was observed. We have compared our experimental findings with numerical simulations. The nonadiabatic following of the atomic spin in the trap rotating magnetic field produces geometric forces acting on the trapped atoms.Comment: 4 pages, 4 figure

    Measuring the temporal coherence of an atom laser beam

    Full text link
    We report on the measurement of the temporal coherence of an atom laser beam extracted from a 87^{87}Rb Bose-Einstein condensate. Reflecting the beam from a potential barrier creates a standing matter wave structure. From the contrast of this interference pattern, observed by magnetic resonance imaging, we have deduced an energy width of the atom laser beam which is Fourier limited by the duration of output coupling. This gives an upper limit for temporal phase fluctuations in the Bose-Einstein condensate.Comment: 4 pages, 3 figure

    The coherent interaction between matter and radiation - A tutorial on the Jaynes-Cummings model

    Full text link
    The Jaynes-Cummings (JC) model is a milestone in the theory of coherent interaction between a two-level system and a single bosonic field mode. This tutorial aims to give a complete description of the model, analyzing the Hamiltonian of the system, its eigenvalues and eigestates, in order to characterize the dynamics of system and subsystems. The Rabi oscillations, together with the collapse and revival effects, are distinguishing features of the JC model and are important for applications in Quantum Information theory. The framework of cavity quantum electrodynamics (cQED) is chosen and two fundamental experiments on the coherent interaction between Rydberg atoms and a single cavity field mode are described.Comment: 22 pages, 7 figures. Tutorial. Submitted to a special issue of EPJ - ST devoted to the memory of Federico Casagrand

    Quantum dynamical theory for squeezing the output of a Bose-Einstein condensate

    Full text link
    A linear quantum dynamical theory for squeezing the output of the trapped Bose-Einstein condensate is presented with the Bogoliubov approximation. We observe that the non-classical properties, such as sub-Poisson distribution and quadrature squeezing effect, mutually oscillate between the quantum states of the applied optical field and the resulting atom laser beam with time. In particular, it is shown that an initially squeezed optical field will lead to squeezing in the outcoupled atomic beam at later times.Comment: 6 pages, Latex file, Phys.Rev.A 63(2001)1560

    Asymmetry of the natural line profile for the hydrogen atom

    Get PDF
    The asymmetry of the natural line profile for transitions in hydrogen-like atoms is evaluated within a QED framework. For the Lyman-alpha 1s2p1s-2p absorption transition in neutral hydrogen this asymmetry results in an additional energy shift of 2.929856 Hz. For the 2s1/22p3/22s_{1/2}-2p_{3/2} transition it amounts to -1.512674 Hz. As a new feature this correction turns out to be process dependent. The quoted numbers refer to the Compton-scattering process.Comment: RevTex, 7 Latex pages, 1 figur

    Optimal Quantum Cloning via Stimulated Emission

    Get PDF
    We show that optimal universal quantum cloning can be realized via stimulated emission. Universality of the cloning procedure is achieved by choosing systems that have appropriate symmetries. We first discuss a scheme based on stimulated emission in certain three-level-systems, e.g. atoms in a cavity. Then we present a way of realizing optimal universal cloning based on stimulated parametric down-conversion. This scheme also implements the optimal universal NOT operation.Comment: 4 pages, 3 figure

    Scheme for the preparation of the multi-particle entanglement in cavity QED

    Get PDF
    Here we present a quantum electrodynamics (QED) model involving a large-detuned single-mode cavity field and nn identical two-level atoms. One of its applications for the preparation of the multi-particle states is analyzed. In addition to the Greenberger-Horne-Zeilinger (GHZ) state, the W class states can also be generated in this scheme. The further analysis for the experiment of the model of n=2n=2 case is also presented by considering the possible three-atom collision.Comment: 5 Pages, 1 Figure. Minor change
    corecore