35 research outputs found
Recommended from our members
Molybdenum Chalcogenobenzimidato Complexes: Radical Synthesis and Nitrile Extrusion via β-EPh (E = S, Se, and Te) Elimination
Molybdenum chalcogenobenzimidates of formula (Ph[PhE]CN)Mo(N[t-Bu]Ar)3 (Ar = 3,5-C6H3Me2) have been obtained by treatment of Mo(N[t-Bu]Ar)3 sequentially with benzonitrile and 0.5 equiv of PhEEPh (E = S, Se, and Te). Molecular structure determinations have been carried out for the S and Se variants. The Te variant extrudes PhCN forming structurally characterized (PhTe)Mo(N[t-Bu]Ar)3 with facility assessed via stopped-flow kinetic measurements, while the Se and S analogues exhibit increasing stability. Quantum chemical calculations and solution calorimetry have been employed as an aid to interpretation of the PhCN extrusion reaction
Recommended from our members
Benzonitrile extrusion from molybdenum(IV) ketimide complexes obtained via radical C-E (E = O, S, Se) bond formation: toward a new nitrogen atom transfer reaction
Beta-elimination is explored as a possible means of nitrogen-atom transfer into organic molecules. Molybdenum(IV) ketimide complexes of formula (Ar[t-Bu]N)3Mo(N=C(X)Ph), where Ar = 3,5-Me2C6H3 and X = SC6F5, SeC6F5, or O2CPh, are formally derived from addition of the carbene fragment [:C(X)Ph] to the terminal nitrido molybdenum(VI) complex (Ar[t-Bu]N)3Mo identical with N in which the nitrido nitrogen atom is installed by scission of molecular nitrogen. Herein the pivotal (Ar[t-Bu]N)3Mo(N=C(X)Ph) complexes are obtained through independent synthesis, and their propensity to undergo beta-X elimination, i.e., conversion to (Ar[t-Bu]N)3MoX + PhC identical with N, is investigated. Radical C-X bond formation reactions ensue when benzonitrile is complexed to the three-coordinate molybdenum(III) complex (Ar[t-Bu]N)3Mo and then treated with 0.5 equiv of X2, leading to facile assembly of the key (Ar[t-Bu]N)3Mo(N=C(X)Ph) molecules. Treated herein are synthetic, structural, thermochemical, and kinetic aspects of (i) the radical C-X bond formation and (ii) the ensuing beta-X elimination processes. Beta-X elimination is found to be especially facile for X = O2CPh, and the reaction represents an attractive component of an overall synthetic cycle for incorporation of dinitrogen-derived nitrogen atoms into organic nitrile (R-C identical with N) molecules
Ligand-Directed Reactivity in Dioxygen and Water Binding to cis-[Pd(NHC)2(2O2)]
Reaction of [Pd(IPr)(2)] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) and O-2 leads to the surprising discovery that at low temperature the initial reaction product is a highly labile peroxide complex cis-[Pd(IPr)(2)(eta(2)-O-2)]. At temperatures greater than or similar to -40 degrees C, cis-[Pd(IPr)(2)(eta(2)-O-2)] adds a second O-2 to form trans-[Pd(IPr)(2)(eta(1)-O-2)(2)]. Squid magnetometry and EPR studies yield data that are consistent with a singlet diradical ground state with a thermally accessible triplet state for this unique bis-superoxide complex. In addition to reaction with O-2 , cis-[Pd(IPr)(2)(eta(2)-O-2)] reacts at low temperature with H2O in methanol/ether solution to form trans-[Pd(IPr)(2)(OH)(OOH)]. The crystal structure of trans-[Pd(IPr)(2)(OOH) (OH)] is reported. Neither reaction with O-2 nor reaction with H2O occurs under comparable conditions for cis-[Pd(IMes)(2)(eta(2)-O-2)] (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene). The increased reactivity of cis-[Pd(IPr)(2)(eta(2)-O-2)] is attributed to the enthalpy of binding of O-2 to [Pd(IPr)(2)] (-14.5 +/- 1.0 kcal/mol) that is approximately one-half that of [Pd(IMes)(2)] (-27.9 +/- 1.5 kcal/mol). Computational studies identify the cause as interligand repulsion forcing a wider C-Pd-C angle and tilting of the NHC plane in cis-[Pd(IPr)(2)(eta(2)-O-2)]. Arene-arene interactions are more favorable and serve to further stabilize. cis-[Pd(IMes)(2)(eta(2)-O-2)]. Inclusion of dispersion effects in DFT calculations leads to improved agreement between experimental and computational enthalpies of O-2 binding. A complete reaction diagram is constructed for formation of trans-[Pd(IPr)(2)(eta(1)-O-2)(2)] and leads to the conclusion that kinetic factors inhibit formation of trans-[Pd(IMes)(2)(eta(1)-O-2)(2)] at the low temperatures at which it is thermodynamically favored. Failure to detect the predicted T-shaped intermediate trans-[Pd(NHC)(2)(eta(1)-O-2)] for either NHC = IMes or IPr is attributed to dynamic effects. A partial potential energy diagram for initial binding of O-2 is constructed. A range of low-energy pathways at different angles of approach are present and blur the distinction between pure "side-on" or "end-on" trajectories for oxygen binding
Recommended from our members
Solution Calorimetric and Stopped-Flow Kinetic Studies of the Reaction of •Cr(CO)3C5Me5 with PhSe−SePh and PhTe−TePh. Experimental and Theoretical Estimates of the Se−Se, Te−Te, H−Se, and H−Te Bond Strengths
The kinetics of the oxidative addition of PhSeSePh and PhTeTePh to the stable 17-electron complex •Cr(CO)3C5Me5 have been studied utilizing stopped-flow techniques. The rates of reaction are first-order in each reactant, and the enthalpy of activation decreases in going from Se (ΔH ‡ = 7.0 ± 0.5 kcal/mol, ΔS ‡ = −22 ± 3 eu) to Te (ΔH ‡ = 4.0 ± 0.5 kcal/mol, ΔS ‡ = −26 ± 3 eu). The kinetics of the oxidative addition of PhSeH and •Cr(CO)3C5Me5 show a change in mechanism in going from low (overall third-order) to high (overall second-order) temperatures. The enthalpies of the oxidative addition of PhE−EPh to •Cr(CO)3C5Me5 in toluene solution have been measured and found to be −29.6, −30.8, and −28.9 kcal/mol for S, Se, and Te, respectively. These data are combined with enthalpies of activation from kinetic studies to yield estimates for the solution-phase PhE−EPh bond strengths of 46, 41, and 33 kcal/mol for E = S, Se, and Te, respectively. The corresponding Cr−EPh bond strengths are 38, 36, and 31 kcal/mol. Two methods have been used to determine the enthalpy of hydrogenation of PhSeSePh in toluene on the basis of reactions of HSPh and HSePh with either •Cr(CO)3C5Me5 or 2-pyridine thione. These data lead to a thermochemical estimate of 72 kcal/mol for the PhSe−H bond strength in toluene solution, which is in good agreement with kinetic studies of H atom transfer from HSePh at higher temperatures. The reaction of H−Cr(CO)3C5Me5 with PhSe−SePh is accelerated by the addition of a Cr radical and occurs via a rapid radical chain reaction. In contrast, the reaction of PhTe−TePh and H−Cr(CO)3C5Me5 does not occur at any appreciable rate at room temperature, even in the presence of added Cr radicals. This is in keeping with a low PhTe−H bond strength blocking the chain and implies that H−TePh ≤ 63 kcal/mol. Structural data are reported for PhSe−Cr(CO)3C5Me5 and PhS−Cr(CO)3C5Me5. The two isostructural complexes do not show signs of an increase in steric strain in terms of metal−ligand bonds or angles as the Cr−EPh bond is shortened in going from Se to S. Bond strength estimates of the PhE−H and PhE−EPh derived from density functional theory calculations are in reasonable agreement with experimental data for E = Se but not for E = Te. The nature of the singly occupied molecular orbital of the •EPh radicals is calculated to show increasing localization on the chalcogenide atom in going from S to Se to Te
Thermodynamic, kinetic, and computational study of heavier chalcogen (S, Se, and Te) terminal multiple bonds to molybdenum, carbon, and phosphorus
Enthalpies of chalcogen atom transfer to Mo(N[t-Bu]Ar)(3), where Ar = 3,5-C(6)H(3)Me(2), and to IPr (defined as bis-(2,6-isopropylphenyl)imidazol-2-ylidene) have been measured by solution calorimetry leading to bond energy estimates (kcal/mol) for EMo(N[t-Bu]Ar)(3) (E = S, 115; Se, 87; Te, 64) and EIPr (E = S, 102; Se, 77; Te, 53). The enthalpy of S-atom transfer to PMo(N[t-Bu]Ar)(3) generating SPMo(N[t-Bu]Ar)(3) has been measured, yielding a value of only 78 kcal/mol. The kinetics of combination of Mo(N[t-Bu]Ar)(3) with SMo(N[t-Bu]Ar)(3) yielding (mu-S)[Mo(N[t-Bu]Ar)(3)](2) have been studied, and yield activation parameters Delta H double dagger = 4.7 +/- 1 kcal/mol and Delta S double dagger = -33 +/- 5 eu. Equilibrium studies for the same reaction yielded thermochemical parameters Delta H degrees = -18.6 +/- 3.2 kcal/mol and Delta S degrees = -56.2 +/- 10.5 eu. The large negative entropy of formation of (mu-S)[Mo(N[t-Bu]Ar)(3)](2) is interpreted in terms of the crowded molecular structure of this complex as revealed by X-ray crystallography. The crystal structure of Te-atom transfer agent TePCy(3) is also reported. Quantum chemical calculations were used to make bond energy predictions as well as to probe terminal chalcogen bonding in terms of an energy partitioning analysis
Thermodynamic, kinetic, and computational study of heavier chalcogen (S, Se, and Te) terminal multiple bonds to molybdenum, carbon, and phosphorus
Enthalpies of chalcogen atom transfer to Mo(N[t-Bu]Ar)(3), where Ar = 3,5-C6H3Me2, and to IPr (defined as bis-(2,6-isopropylphenyl)imidazol-2-ylidene) have been measured by solution calorimetry leading to bond energy estimates (kcal/mol) for EMo(N[t-Bu]Ar)(3) (E = S, 115; Se, 87; Te, 64) and EIPr (E = S, 102; Se, 77; Te, 53). The enthalpy of S-atom transfer to PMo(N[t-Bu]Ar)(3) generating SPMo(N[t-Bu]Ar)(3) has been measured, yielding a value of only 78 kcal/mol. The kinetics of combination of Mo(N[t-Bu]Ar)(3) with SMo(N[t-Bu]Ar)(3) yielding (mu-S)[Mo(N[t-Bu]Ar)(3)](2) have been studied, and yield activation parameters Delta H double dagger = 4.7 +/- 1 kcal/mol and Delta S double dagger = -33 +/- 5 eu. Equilibrium studies for the same reaction yielded thermochemical parameters Delta H degrees = -18.6 +/- 3.2 kcal/mol and Delta S degrees = -56.2 +/- 10.5 eu. The large negative entropy of formation of (mu-S)[Mo(N[t-Bu]Ar)(3)](2) is interpreted in terms of the crowded molecular structure of this complex as revealed by X-ray crystallography. The crystal structure of Te-atom transfer agent TePCy3 is also reported. Quantum chemical calculations were used to make bond energy predictions as well as to probe terminal chalcogen bonding in terms of an energy partitioning analysis.</p