324 research outputs found

    Rta of murine gammaherpesvirus 68 reactivates the complete lytic cycle from latency

    Get PDF
    Herpesviruses are characterized as having two distinct life cycle phases: lytic replication and latency. The mechanisms of latency establishment and maintenance, as well as the switch from latency to lytic replication, are poorly understood. Human gammaherpesviruses, including Epstein-Barr virus (EBV) and human herpesvirus-8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), are associated with lymphoproliferative diseases and several human tumors. Unfortunately, the lack of cell lines to support efficient de novo productive infection and restricted host ranges of EBV and HHV-8 make it difficult to explore certain important biological questions. Murine gammaherpesvirus 68 (MHV-68, or γHV68) can establish de novo lytic infection in a variety of cell lines and is also able to infect laboratory mice, offering an ideal model with which to study various aspects of gammaherpesvirus infection. Here we describe in vitro studies of the mechanisms of the switch from latency to lytic replication of MHV-68. An MHV-68 gene, rta (replication and transcription activator), encoded primarily by open reading frame 50 (ORF50), is homologous to the rta genes of other gammaherpesviruses, including HHV-8 and EBV. HHV-8 and EBV Rta have been shown to play central roles in viral reactivation from latency. We first studied the kinetics of MHV-68 rta gene transcription during de novo lytic infection. MHV-68 rta was predominantly expressed as a 2-kb immediate-early transcript. Sequence analysis of MHV-68 rta cDNA revealed that an 866-nucleotide intron 5′ of ORF50 was removed to create the Rta ORF of 583 amino acids. To test the functions of MHV-68 Rta in reactivation, a plasmid expressing Rta was transfected into a latently infected cell line, S11E, which was established from a B-cell lymphoma in an MHV-68-infected mouse. Rta induced expression of viral early and late genes, lytic replication of viral DNA, and production of infectious viral particles. We conclude that Rta alone is able to disrupt latency, activate viral lytic replication, and drive the lytic cycle to completion. This study indicates that MHV-68 provides a valuable model for investigating regulation of the balance between latency and lytic replication in vitro and in vivo

    OX40 Ligand and Programmed Cell Death 1 Ligand 2 Expression on Inflammatory Dendritic Cells Regulates CD4 T Cell Cytokine Production in the Lung during Viral Disease

    Get PDF
    CD4-T-helper-cell (Th) differentiation is influenced by costimulatory molecules expressed on conventional dendritic cells (DCs) in regional lymph nodes and results in specific patterns of cytokine production. However, the function of costimulatory molecules on ‘inflammatory’ (CD11b+) DCs in the lung during recall responses is not fully understood, but important for development of novel interventions to limit immunopathological responses to infection. Using a mouse model in which vaccination with vaccinia virus vectors expressing the respiratory syncytial virus (RSV) fusion protein (rVVF) or attachment protein (rVVG) leads to type 1- or type 2-biased cytokine responses respectively upon RSV-challenge, we found expression of CD40 and OX40L on lung inflammatory DCs was higher in rVVF- than in rVVG-primed mice early after RSV-challenge, while the reverse was observed later in the response. Conversely, PD-L2 was higher in rVVG-primed mice throughout. Inflammatory DCs isolated at the resolution of inflammation revealed OX40L on type 1-biased DCs promoted IL-5, while on type 2-biased DCs enhanced IFNγ production by antigen-reactive Th cells. In contrast, PD-L2 promoted IFNγ production irrespective of conditions, suppressing IL-5 only if expressed on type 1-biased DCs. Thus, OX40L and PD-L2 expressed on DCs differentially regulate cytokine production during recall responses in the lung. Manipulation of these costimulatory pathways may provide a novel approach to controlling pulmonary inflammatory responses

    Bird wings act as a suspension system that rejects gusts

    Get PDF
    Musculoskeletal systems cope with many environmental perturbations without neurological control. These passive preflex responses aid animals to move swiftly through complex terrain. Whether preflexes play a substantial role in animal flight is uncertain. We investigated how birds cope with gusty environments and found that their wings can act as a suspension system, reducing the effects of vertical gusts by elevating rapidly about the shoulder. This preflex mechanism rejected the gust impulse through inertial effects, diminishing the predicted impulse to the torso and head by 32% over the first 80 ms, before aerodynamic mechanisms took effect. For each wing, the centre of aerodynamic loading aligns with the centre of percussion, consistent with enhancing passive inertial gust rejection. The reduced motion of the torso in demanding conditions simplifies crucial tasks, such as landing, prey capture and visual tracking. Implementing a similar preflex mechanism in future small-scale aircraft will help to mitigate the effects of gusts and turbulence without added computational burden

    Wisdom of the crowd: insights gained from comparing predicted and observed effects of blood pressure lowering strategies

    Get PDF
    In a first of its kind assessment in cardiovascular research, we assessed whether pooled cardiovascular expertise could accurately predict efficacy and tolerability for both a novel and an established treatment option. A survey was administered prior to the publication of the QUARTET (A Quadruple UltrA-low-dose tReatment for hypErTension) trial. QUARTET was a multicentre, double-blind, parallel-group, trial that randomised participants to initial treatment with either monotherapy or an ultra-low dose quadruple single pill combination for 12 weeks. Survey participants were asked to predict blood pressure (BP) at 12 weeks and 52 weeks for both groups

    A Novel Inhibitory Mechanism of Mitochondrion-Dependent Apoptosis by a Herpesviral Protein

    Get PDF
    Upon viral infection, cells undergo apoptosis as a defense against viral replication. Viruses, in turn, have evolved elaborate mechanisms to subvert apoptotic processes. Here, we report that a novel viral mitochondrial anti-apoptotic protein (vMAP) of murine γ-herpesvirus 68 (γHV-68) interacts with Bcl-2 and voltage-dependent anion channel 1 (VDAC1) in a genetically separable manner. The N-terminal region of vMAP interacted with Bcl-2, and this interaction markedly increased not only Bcl-2 recruitment to mitochondria but also its avidity for BH3-only pro-apoptotic proteins, thereby suppressing Bax mitochondrial translocation and activation. In addition, the central and C-terminal hydrophobic regions of vMAP interacted with VDAC1. Consequently, these interactions resulted in the effective inhibition of cytochrome c release, leading to the comprehensive inhibition of mitochondrion-mediated apoptosis. Finally, vMAP gene was required for efficient γHV-68 lytic replication in normal cells, but not in mitochondrial apoptosis-deficient cells. These results demonstrate that γHV-68 vMAP independently targets two important regulators of mitochondrial apoptosis-mediated intracellular innate immunity, allowing efficient viral lytic replication

    Raptor wing morphing with flight speed

    Get PDF
    In gliding flight, birds morph their wings and tails to control their flight trajectory and speed. Using high-resolution videogrammetry, we reconstructed accurate and detailed three-dimensional geometries of gliding flights for three raptors (barn owl, Tyto alba; tawny owl, Strix aluco, and goshawk, Accipiter gentilis). Wing shapes were highly repeatable and shoulder actuation was a key component of reconfiguring the overall planform and controlling angle of attack. The three birds shared common spanwise patterns of wing twist, an inverse relationship between twist and peak camber, and held their wings depressed below their shoulder in an anhedral configuration. With increased speed, all three birds tended to reduce camber throughout the wing, and their wings bent in a saddle-shape pattern. A number of morphing features suggest that the coordinated movements of the wing and tail support efficient flight, and that the tail may act to modulate wing camber through indirect aeroelastic control

    Artificial mass loading disrupts stable social order in pigeon dominance hierarchies

    Get PDF
    Dominance hierarchies confer benefits to group members by decreasing the incidences of physical conflict, but may result in certain lower ranked individuals consistently missing out on access to resources. Here, we report a linear dominance hierarchy remaining stable over time in a closed population of birds. We show that this stability can be disrupted, however, by the artificial mass loading of birds that typically comprise the bottom 50% of the hierarchy. Mass loading causes these low-ranked birds to immediately become more aggressive and rise-up the dominance hierarchy; however, this effect was only evident in males and was absent in females. Removal of the artificial mass causes the hierarchy to return to its previous structure. This interruption of a stable hierarchy implies a strong direct link between body mass and social behaviour and suggests that an individual's personality can be altered by the artificial manipulation of body mass

    Cross-species conservation of episome maintenance provides a basis for in vivo investigation of Kaposi's sarcoma herpesvirus LANA

    Get PDF
    Copyright: © 2017 Habison et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Many pathogens, including Kaposi's sarcoma herpesvirus (KSHV), lack tractable small animal models. KSHV persists as a multi-copy, nuclear episome in latently infected cells. KSHV latency-associated nuclear antigen (kLANA) binds viral terminal repeat (kTR) DNA to mediate episome persistence. Model pathogen murine gammaherpesvirus 68 (MHV68) mLANA acts analogously on mTR DNA. kLANA and mLANA differ substantially in size and kTR and mTR show little sequence conservation. Here, we find kLANA and mLANA act reciprocally to mediate episome persistence of TR DNA. Further, kLANA rescued mLANA deficient MHV68, enabling a chimeric virus to establish latent infection in vivo in germinal center B cells. The level of chimeric virus in vivo latency was moderately reduced compared to WT infection, but WT or chimeric MHV68 infected cells had similar viral genome copy numbers as assessed by immunofluorescence of LANA intranuclear dots or qPCR. Thus, despite more than 60 Ma of evolutionary divergence, mLANA and kLANA act reciprocally on TR DNA, and kLANA functionally substitutes for mLANA, allowing kLANA investigation in vivo. Analogous chimeras may allow in vivo investigation of genes of other human pathogens.This work was supported in part by National Institutes of Health grants CA082036 (NCI), DE025208, and DE024971 (both NIDCR), to KMK, FCT PTDC/IMI-MIC/0980/2014 to JPS, FCT Harvard Medical School Portugal Program in Translational Research (HMSP-ICT/0021/2010) to JPS, KMK, CEM, Instituto de Medicina Molecular Directors Fund to JPS, and iNOVA4Health Research Unit (LISBOA-01-0145-FEDER-007344) FCT/FEDER (PT2020 Partnership Agreement) to CEM. M.P.M is supported by a fellowship from Fundação para a Ciência e Tecnologia (FCT), Portugal.info:eu-repo/semantics/publishedVersio

    Effect of occupational therapy home visit discharge planning on participation after stroke: Protocol for the HOME Rehab trial

    Get PDF
    Introduction: After first stroke, the transition from rehabilitation to home can be confronting and fraught with challenges. Although stroke clinical practice guidelines recommend predischarge occupational therapy home visits to ensure safe discharge and provision of appropriate equipment, there is currently limited evidence to support this recommendation. Methods and analysis: The HOME Rehab trial is a national, multicentre, phase III randomised controlled trial with concealed allocation, blinded assessment and intention-to-treat analysis being conducted in Australia. The trial aim is to determine the effect and potential cost-effectiveness of an enhanced occupational therapy discharge planning intervention that involves pre and postdischarge home visits, goal setting and occupational therapy in the home (the HOME programme) in comparison to an in-hospital predischarge planning intervention. Stroke survivors aged ≥ 45 years, admitted to a rehabilitation ward, expected to return to a community (private) dwelling after discharge, with no significant prestroke disability will be randomly allocated 1:1 to receive a standardised discharge planning intervention and the HOME programme or the standardised discharge planning intervention alone. The primary outcome is participation measured using the Nottingham Extended Activities of Daily Living. Secondary outcome areas include hospital readmission, disability, performance of instrumental activities of daily living, health-related quality of life, quality of care transition and carer burden. Resources used/costs will be collected for the cost-effectiveness analysis and hospital readmission. Recruitment commenced in 2019. Allowing for potential attrition, 360 participants will be recruited to detect a clinically important treatment difference with 80% power at a two-tailed significance level of 0.05. Ethics and dissemination: This study is approved by the Alfred Health Human Research Ethics Committee and site-specific ethics approval has been obtained at all participating sites. Results of the main trial and the secondary endpoint of cost-effectiveness will be submitted for publication in peer-reviewed journals Trial registration number: ACTRN1261800136020

    Age-Related Variation in the Provision of Primary Care Services and Medication Prescriptions for Patients with Cardiovascular Disease

    Full text link
    As population aging progresses, demands of patients with cardiovascular diseases (CVD) on the primary care services is inevitably increased. However, the utilisation of primary care services across varying age groups is unknown. The study aims to explore age-related variations in provision of chronic disease management plans, mental health care, guideline-indicated cardiovascular medications and influenza vaccination among patients with CVD over differing ages presenting to primary care. Data for patients with CVD were extracted from 50 Australian general practices. Logistic regression, accounting for covariates and clustering effects by practices, was used for statistical analysis. Of the 14,602 patients with CVD (mean age, 72.5 years), patients aged 65–74, 75–84 and ≥85 years were significantly more likely to have a GP management plan prepared (adjusted odds ratio (aOR): 1.6, 1.88 and 1.55, respectively, p < 0.05), have a formal team care arrangement (aOR: 1.49, 1.8, 1.65, respectively, p < 0.05) and have a review of either (aOR: 1.63, 2.09, 1.93, respectively, p < 0.05) than those < 65 years. Patients aged ≥ 65 years were more likely to be prescribed blood-pressure-lowering medications and to be vaccinated for influenza. However, the adjusted odds of being prescribed lipid-lowering and antiplatelet medications and receiving mental health care were significantly lowest among patients ≥ 85 years. There are age-related variations in provision of primary care services and pharmacological therapy. GPs are targeting care plans to older people who are more likely to have long-term conditions and complex needs
    • …
    corecore