1,736 research outputs found

    Identification of an HIV-1 mutation in spacer peptide 1 that stabilizes the immature CA-SP1 lattice

    Get PDF
    Upon release of HIV-1 particles from the infected cell, the viral protease cleaves the Gag polyprotein at specific sites, triggering maturation. During this process, which is essential for infectivity, the capsid protein (CA) reassembles into a conical core. Maturation inhibitors (MIs) block HIV-1 maturation by interfering with protease-mediated CA-spacer peptide 1 (CA-SP1) processing, concomitantly stabilizing the immature CA-SP1 lattice; virions from MI-treated cells retain an immature-like CA-SP1 lattice, whereas mutational abolition of cleavage at the CA-SP1 site results in virions in which the CA-SP1 lattice converts to a mature-like form. We previously reported that propagation of HIV-1 in the presence of MI PF-46396 selected for assembly-defective, compound-dependent mutants with amino acid substitutions in the major homology region (MHR) of CA. Propagation of these mutants in the absence of PF-46396 resulted in the acquisition of second-site compensatory mutations. These included a Thr-to-Ile substitution at SP1 residue 8 (T8I), which results in impaired CA-SP1 processing. Thus, the T8I mutation phenocopies PF-46396 treatment in terms of its ability to rescue the replication defect imposed by the MHR mutations and to impede CASP1 processing. Here, we use cryo-electron tomography to show that, like MIs, the T8I mutation stabilizes the immature-like CA-SP1 lattice. These results have important implications for the mechanism of action of HIV-1 MIs; they also suggest that T8I may provide a valuable tool for structural definition of the CA-SP1 boundary region, which has thus far been refractory to highresolution analysis, apparently because of conformational flexibility in this region of Gag. IMPORTANCE HIV-1 maturation involves dissection of the Gag polyprotein by the viral protease and assembly of a conical capsid enclosing the viral ribonucleoprotein. Maturation inhibitors (MIs) prevent the final cleavage step at the site between the capsid protein (CA) and spacer peptide 1 (SP1), apparently by binding at this site and denying the protease access. Additionally, MIs stabilize the immature-like CA-SP1 lattice, preventing release of CA into the soluble pool. We previously found that T8I, a mutation in SP1, rescues a PF-46396-dependent CA mutant and blocks CA-SP1 cleavage. In this study, we imaged T8I virions by cryo-electron tomography and showed that T8I mutants, like MI-treated virions, contain an immature CA-SP1 lattice. These results lay the groundwork needed to understand the structure of the CA-SP1 interface region and further illuminate the mechanism of action of MIs

    The infinite-range quantum random Heisenberg magnet

    Full text link
    We study with exact diagonalization techniques the Heisenberg model for a system of SU(2) spins with S=1/2 and random infinite-range exchange interactions. We calculate the critical temperature T_g for the spin-glass to paramagnetic transition. We obtain T_g ~ 0.13, in good agreement with previous quantum Monte Carlo and analytical estimates. We provide a detailed picture for the different kind of excitations which intervene in the dynamical response chi''(w,T) at T=0 and analyze their evolution as T increases. We also calculate the specific heat Cv(T). We find that it displays a smooth maximum at TM ~ 0.25, in good qualitative agreement with experiments. We argue that the fact that TM>Tg is due to a quantum disorder effect.Comment: 17 pages, 14 figure

    Itinerant-Electron Magnet of the Pyrochlore Lattice: Indium-Doped YMn2Zn20

    Full text link
    We report on a ternary intermetallic compound, "YMn2Zn20", comprising a pyrochlore lattice made of Mn atoms. A series of In-doped single crystals undergo no magnetic long-range order down to 0.4 K, in spite of the fact that the Mn atom carries a local magnetic moment at high temperatures, showing Curie-Weiss magnetism. However, In-rich crystals exhibit spin-glass transitions at approximately 10 K due to a disorder arising from the substitution, while, with decreasing In content, the spin-glass transition temperature is reduced to 1 K. Then, heat capacity divided by temperature approaches a large value of 280 mJ K-2 mol-1, suggesting a significantly large mass enhancement for conduction electrons. This heavy-fermion-like behavior is not induced by the Kondo effect as in ordinary f-electron compounds, but by an alternative mechanism related to the geometrical frustration on the pyrochlore lattice, as in (Y,Sc)Mn2 and LiV2O4, which may allow spin entropy to survive down to low temperatures and to couple with conduction electrons.Comment: 5 pages, 4 figures, J. Phys. Soc. Jpn., in pres

    Non-generality of the Kadowaki-Woods ratio in correlated oxides

    Full text link
    An explicit expression for the Kadowaki-Woods ratio in correlated metals is derived by invoking saturation of the (high-frequency) Fermi-liquid scattering rate at the Mott-Ioffe-Regel limit. Significant deviations observed in a number of oxides are quantitatively explained due to variations in carrier density, dimensionality, unit cell volume and the number of individual sheets in the Brillouin zone. A generic re-scaling of the original Kadowaki-Woods plot is also presented.Comment: 9 pages of text, 1 table, 2 figure

    Transcriptional Regulation of VEGF-A by the Unfolded Protein Response Pathway

    Get PDF
    BACKGROUND: Angiogenesis is crucial to many physiological and pathological processes including development and cancer cell survival. Vascular endothelial growth factor-A (VEGFA) is the predominant mediator of angiogenesis in the VEGF family. During development, adverse environmental conditions like nutrient deprivation, hypoxia and increased protein secretion occur. IRE1alpha, PERK, and ATF6alpha, master regulators of the unfolded protein response (UPR), are activated under these conditions and are proposed to have a role in mediating angiogenesis. PRINCIPAL FINDINGS: Here we show that IRE1alpha, PERK, and ATF6alpha powerfully regulate VEGFA mRNA expression under various stress conditions. In Ire1alpha(-/-) and Perk(-/-) mouse embryonic fibroblasts and ATF6alpha-knockdown HepG2 cells, induction of VEGFA mRNA by endoplasmic reticulum stress is attenuated as compared to control cells. Embryonic lethality of Ire1alpha-/- mice is due to the lack of VEGFA induction in labyrinthine trophoblast cells of the developing placenta. Rescue of IRE1alpha and PERK in Ire1alpha(-/-) and Perk(-/-) cells respectively, prevents VEGFA mRNA attenuation. We further report that the induction of VEGFA by IRE1alpha, PERK and ATF6 involves activation of transcription factors, spliced-XBP-1, ATF4 and cleaved ATF6 respectively. CONCLUSIONS/SIGNIFICANCE: Our results reveal that the IRE1alpha-XBP-1, PERK-ATF4, and ATF6alpha pathways constitute novel upstream regulatory pathways of angiogenesis by modulating VEGF transcription. Activation of these pathways helps the rapidly growing cells to obtain sufficient nutrients and growth factors for their survival under the prevailing hostile environmental conditions. These results establish an important role of the UPR in angiogenesis

    Enthalpy and the Mechanics of AdS Black Holes

    Get PDF
    We present geometric derivations of the Smarr formula for static AdS black holes and an expanded first law that includes variations in the cosmological constant. These two results are further related by a scaling argument based on Euler's theorem. The key new ingredient in the constructions is a two-form potential for the static Killing field. Surface integrals of the Killing potential determine the coefficient of the variation of the cosmological constant in the first law. This coefficient is proportional to a finite, effective volume for the region outside the AdS black hole horizon, which can also be interpreted as minus the volume excluded from a spatial slice by the black hole horizon. This effective volume also contributes to the Smarr formula. Since the cosmological constant is naturally thought of as a pressure, the new term in the first law has the form of effective volume times change in pressure that arises in the variation of the enthalpy in classical thermodynamics. This and related arguments suggest that the mass of an AdS black hole should be interpreted as the enthalpy of the spacetime.Comment: 21 pages; v2 references adde

    Structural Ordering and Symmetry Breaking in Cd_2Re_2O_7

    Full text link
    Single crystal X-ray diffraction measurements have been carried out on Cd_2Re_2O_7 near and below the phase transition it exhibits at Tc' ~195 K. Cd_2Re_2O_7 was recently discovered as the first, and to date only, superconductor with the cubic pyrochlore structure. Superlattice Bragg peaks show an apparently continuous structural transition at Tc', however the order parameter displays anomalously slow growth to ~Tc'/10, and resolution limited critical-like scattering is seen above Tc'. High resolution measurements show the high temperature cubic Bragg peaks to split on entering the low temperature phase, indicating a (likely tetragonal) lowering of symmetry below Tc'.Comment: 4 pages, 4 figure
    • …
    corecore