16,708 research outputs found

    The Giant Monopole Resonance in Pb isotopes

    Full text link
    The extraction of the nuclear incompressibility from the isoscalar giant monopole resonance (GMR) measurements is analysed. Both pairing and mutually enhanced magicity (MEM) effects play a role in the shift of the GMR energy between the doubly closed shell 208^{208}Pb nucleus and other Pb isotopes. Pairing effects are microscopically predicted whereas the MEM effect is phenomenologically evaluated. Accurate measurements of the GMR in open-shell Pb isotopes are called for.Comment: 4 page

    Effect of pairing correlations on incompressibility and symmetry energy in nuclear matter and finite nuclei

    Get PDF
    The role of superfluidity in the incompressibility and in the symmetry energy is studied in nuclear matter and finite nuclei. Several pairing interactions are used: surface, mixed and isovector dependent. Pairing has a small effect on the nuclear matter incompressibility at saturation density, but the effects are significant at lower densities. The pairing effect on the centroid energy of the isoscalar Giant Monopole Resonance (GMR) is also evaluated for Pb and Sn isotopes by using a microscopic constrained-HFB approach, and found to change at most by 10% the nucleus incompressibility KAK_A. It is shown by using the Local Density Approximation (LDA) that most of the pairing effect on the GMR centroid come from the low-density nuclear surface.Comment: 9 pages, 6 figure

    Neutron specific heat in the crust of neutron stars from the nuclear band theory

    Full text link
    The inner crust of neutron stars, formed of a crystal lattice of uclear clusters immersed in a sea of unbound neutrons, may be the nique example of periodic nuclear systems. We have calculated the neutron specific heat in the shallow part of the crust using the band theory of solids with Skyrme nucleon-nucleon interactions. We have also tested the validity of various approximations. We have found that the neutron specific heat is well described by that of a Fermi gas, while the motion of the unbound neutrons is strongly affected by the nuclear lattice. These apparently contradictory results are explained by the particular properties of the neutron Fermi surface

    Soliton response to transient trap variations

    Full text link
    The response of bright and dark solitons to rapid variations in an expulsive longitudinal trap is investigated. We concentrate on the effect of transient changes in the trap frequency in the form of temporal delta kicks and the hyperbolic cotangent functions. Exact expressions are obtained for the soliton profiles. This is accomplished using the fact that a suitable linear Schrodinger stationary state solution in time can be effectively combined with the solutions of non-linear Schrodinger equation, for obtaining solutions of the Gross-Pitaevskii equation with time dependent scattering length in a harmonic trap. Interestingly, there is rapid pulse amplification in certain scenarios
    • …
    corecore