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The role of superfluidity in incompressibility and in symmetry energy is studied in nuclear matter and finite
nuclei. Several pairing interactions are used: surface, mixed, and isovector dependent. Pairing has a small effect
on the nuclear matter incompressibility at saturation density, but the effects are significant at lower densities. The
pairing effect on the centroid energy of the isoscalar giant monopole resonance (GMR) is also evaluated for Pb
and Sn isotopes by using a microscopic constrained-HFB approach and is found to change at most by 10% the
nucleus incompressibility KA. It is shown by using the local density approximation that most of the pairing effect
on the GMR centroid comes from the low-density nuclear surface.
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I. INTRODUCTION

The nuclear incompressibility and the symmetry energy
are closely related to the isoscalar giant monopole resonance
(GMR) [1,2] and to the isovector giant dipole resonance
(GDR) [3], respectively. The question of the effect of pairing
correlations on the centroid energy of the GMR was first
addressed in Ref. [4] and has recently known a renewed
interest [5,6]. In both the Sn and Pb isotopic chains, a specific
increase of the GMR energy, associated with the corresponding
finite nucleus incompressibility KA, has been predicted for
the doubly magic 132Sn and 208Pb nuclei [6,7]. A part of
this apparent stiffness of doubly magic nuclei may be related
to pairing effects that in fact decrease the GMR energy in
open-shell nuclei. However, this study has been undertaken
only with a pure surface pairing interaction. It is therefore
relevant to analyze more systematically this effect using
various pairing functionals. It should be noted that the surface
versus mixed nature of the pairing interaction is still under
discussion. For instance, a recent systematic study based on
the odd-even mass staggering seems to slightly favor a surface
type of pairing interaction [8].

The apparent decrease of incompressibility in superfluid
nuclei raises a question about a possible similar effect
in infinite nuclear matter: Until now, the nuclear matter
incompressibility has been evaluated by neglecting the pairing
part of the functional. However, considering results for finite
nuclei, the equations of state used for neutron stars and super-
novae predictions should take into account pairing effects in
the calculation of the incompressibility modulus. Therefore
the question of the behavior of K∞ with respect to the pairing
gap is raised because it seems clear from nuclear data that
the finite nucleus incompressibility KA decreases with an
increasing pairing gap [6]. A similar study for nuclear matter
as well as a more systematic study in finite nuclei should be
undertaken. This is the goal of the present work. It should
also be noted that we will not consider the neutron-proton

T = 0 pairing channel because the nuclei considered are far
from N = Z.

The density dependence of the symmetry energy is one
of the most debated issues in nuclear physics at present. In
fact, this has relevant implications (1) for nuclear structure,
because it has an important effect on the size of the neutron rms
radius in neutron-rich nuclei; (2) for nuclear reactions, for ex-
ample, in intermediate-energy heavy-ion collisions where the
isospin distribution of the reaction products is dictated by the
density dependence of the symmetry energy; and obviously,
(3) for the description of neutron stars. Review papers have
been devoted to this topic [9,10]. Empirical information on
the symmetry energy can be obtained from various sources,
none of which so far is conclusive by itself. No measurement
of the neutron skin is available that is accurate enough to
constrain the symmetry energy. The properties of the isovector
GDR, of the low-lying electric dipole excitations, and of the
charge-exchange spin-dipole strength have been suggested as
constraints (see, e.g., Ref. [11]). In addition, different model
analyses of heavy-ion collisions have been proposed as a
test of the main trend of the symmetry energy at densities
below saturation. However, in none of these studies, to our
knowledge, has the problem of the pairing effects on the
symmetry energy been addressed.

In this article, the effects of the pairing correlations
on incompressibility and on symmetry energy are studied
consistently in nuclear matter and in finite nuclei. The effects
coming from the correlation energy associated with the pairing
force are included. These pairing effects are studied in Sec. II.
In Sec. III, a local density approximation (LDA) approach
to the problem is employed to understand the connection
between the effects in infinite matter and finite systems: The
120Sn nucleus is used as a benchmark. Finally, in Sec. IV,
a microscopic study of the role of superfluidity in the
incompressibility of finite nuclei is undertaken, employing
several pairing interactions: surface, mixed, and isovector
dependent. Section V concludes.
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II. NUCLEAR MATTER

In this section, we study the effects of the pairing corre-
lations on the incompressibility and the symmetry energy in
nuclear matter.

A. Energy density

The nuclear energy density ε (ε/ρ = E/V ) is the sum of
the Skyrme part, εSkyrme, that includes the kinetic energy [12],
plus the pairing energy density:

ε = εSkyrme + εpair. (1)

Here

εpair = − 1
2

(
Nn�

2
n + Np�2

p

)
. (2)

In Eq. (2), �τ is the pairing gap and Nτ is the density of
states, given by Nτ = m∗

τ kFτ /π
2h̄2, with τ = n, p. The energy

density ε is a function of the total density ρ and of the
asymmetry parameter δ = (ρn − ρp)/ρ. In the T = 1 channel,
several pairing interactions are defined by

vIS
pair(�r, �r ′) = v0

[
1 − η

(
ρ

ρ0

)α]
δ(�r − �r ′), (3)

as a function of the value of η that can range from 0
(volume-type pairing) to 1 (surface-type pairing). In Eq. (3),
the parameter α is set to 1, and ρ0 is taken as the saturation
density of symmetric nuclear matter throughout all the study;
moreover, we adopt the parameters η = 0.35 and 0.65 for the
volume-surface mixed-type pairing interactions and η = 1.0
for the surface-type interaction. The values of v0 in all these
cases are adjusted, for each η, in such a way as to obtain
equivalent results for the two-neutron separation energy in the
Sn isotopes by HFB calculations with the SLy5 parameter set.
The pairing cutoff energy is set at 60 MeV [13]. These values
of v0 are given in Table I. In the following, these pairing
interactions will be denoted as IS because they depend on the
isoscalar density.

We have also considered pairing interactions having the
isovector density dependence with δ = (ρn − ρp)/ρ in addi-
tion to the isoscalar density dependence. The MSH interaction
is defined as [16]

vMSH
pair (�r, �r ′) = v0

[
1 − (1 − δ)ηs

(
ρ

ρ0

)αs

− δηn

(
ρ

ρ0

)αn
]

× δ(�r − �r ′), (4)

TABLE I. Strength v0 (in MeV · fm3) of the pairing interactions
obtained in the case of various Skyrme functionals. The values of
v0 are adjusted, for each η, to obtain equivalent results to those of
Ref. [13] for the two-neutron separation energy in the Sn isotopes by
the HFB calculations with the parameter set SLy5. The energy cutoff
for the pairing window is taken to be 60 MeV.

η = 0.35 η = 0.65 η = 1.00

SLy5 [12] −285 −390 −670
Sk255 [14] −265 −390 −600
Sk272 [14] −265 −390 −600
LNS [15] −250 −390 −670

with v0 = −448 MeV · fm3, ηs = 0.598, αs = 0.551, ηn =
0.947, and αn = 0.554 (with a cutoff energy of 60 MeV). The
YS interaction also has the isospin dependence as [17]

vYS
pair(�r, �r ′) = v0

[
1 − (η0 + η1τ3δ)

ρ

ρ0
− η2

(
δ

ρ

ρ0

)2
]

× δ(�r − �r ′), (5)

with v0 = −344 MeV · fm3, η0 = 0.5, η1 = 0.2, and η2 = 2.5
(with a cutoff energy of 50 MeV). The parameters mentioned
have been used in connection with the SLy5 interaction. In
the following, these pairing interactions will be denoted as
IS + IV.

Effective interactions in the pairing channel are faced to the
double counting problem [18]. However, using a zero-range
interaction constrained on bare interactions allows us to avoid
this problem [19]. This motivates the use of a different
interaction in the pairing channel compared to the particle-hole
one. The pairing interactions used in this work are of two
types: either fitted on BCS gaps in symmetric and neutron
matter calculated with bare interaction, as in the MSH case, or
designed to fit observables in nuclei, as in the IS and YS cases.
These pairing interactions are featured with zero range and
with a cutoff, following the prescription of Ref. [19]: Our aim
is to provide reasonable pairing descriptions in nuclei to use
the same interaction in nuclei and in nuclear matter. The MSH
interaction is considered as an extension of Ref. [19], including
isospin dependence. It has been shown that it is possible
to study the surface properties of the pairing interaction
using slabs of nuclear matter [20,21]. However, it should be
mentioned that one usually deals with only the first order in the
diagrammatic expansion of the many-body equations. Thus
adjusting the pairing gap on the bare interaction is done at
this level and is therefore perfectible: There are screening
effects that are at next order, for instance. Therefore adjusting
the gaps on the bare interaction is complementary to other ways
such as constraining the pairing interaction to fit the gaps in
finite nuclei. We use both approaches, as explained earlier.

In this article, symmetric nuclear matter is studied, as is the
behavior of the symmetry energy. With this purpose, it should
be noted that the MSH interaction is obtained by constraining
the neutron and proton gaps of the bare interaction in both
symmetric and pure neutron matter. The YS interaction is
adjusted on several nuclei with different isospins, and there
is an explicit isospin dependence. To perform a study in
asymmetric nuclear matter, the nonlinearity of the energy gap
on the isospin degree of freedom should be considered [22]
and may be studied in a forthcoming study.

The pairing gap in uniform matter is obtained from the BCS
gap equation [23]:

�k =
∑
k′

−vkk′
�k′

2Ek′
, (6)

solved under the condition of the particle number conservation.
In a given volume V , one assumes constant density, given by

ρτ = 2

V

∑
k

[
1 − eτ (k) − µτ

Ek,τ

]
, (7)
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FIG. 1. (Color online) Pairing gap �τ , pairing energy per particle εpair/ρ, percentage of pairing energy with respect to the total energy
ε, and equation of state around the saturation point in symmetric matter obtained with various pairing interactions employed in connection
with the SLy5 Skyrme interaction. The solid, dotted, and dashed lines correspond to the IS pairing interactions with η = 0.35, 0.65, and 1.0,
respectively, in Eq. (3). The dash-dotted and dash-dotted-dotted lines show the results of IS + IV interactions in Ref. [15] (MSH) and Ref. [16]
(YS), respectively. See the text for details.

where the quasiparticle energy is defined as Ek,τ =√
(eτ (k) −µτ )2 + �2

k,τ , eτ (k) is the single particle energy, and
µτ is the chemical potential. In Eq. (6), vkk′ is the pairing matrix
element for the plane waves, namely, 〈kk̄|v|k′k̄′〉. Notice that
in the case of the zero-range pairing interaction, the pairing
gap �k is independent of k.

In Fig. 1, we display the pairing gap �τ , the pairing energy
per particle εpair/ρ, and the percentage of the pairing energy
with respect to the total energy ε in symmetric matter for the
various pairing interactions together with the SLy5 Skyrme
interaction in the mean field channel. There is a critical density
ρc ≈ 0.11 fm−3 at which all the pairing interactions give almost
the same result for the pairing gap. This has already been
noticed in Ref. [13] and may be related to the fact that in
fitting the two-neutron separation energy, one is sensitive to
the space region of the nuclear surface, where the density
is somewhat lower than the saturation density; therefore the
pairing gap is constrained at ρc rather than at ρ0. Notice
that the parameters of the MSH pairing interaction have been
determined without using constraints from finite systems, and
� at ρ0 does not necessarily coincide with the one from
the other pairing interactions. Above ρc, the more surface type
the pairing interaction (i.e., the larger the η that is taken), the
smaller the pairing gap �τ . Below the critical density, the trend
is reversed: The more surface type the pairing interaction is, the
larger the pairing gap. The contribution of the pairing energy
is increased at low densities. Around the saturation density, the
pairing energy per particle is much smaller than the binding
energy (−16 MeV).

B. Incompressibility and symmetry energy

The compressibility χ is usually defined by

χ = − 1

V

∂V

∂P
= 1

ρ

(
∂P

∂ρ

)−1

, (8)

and the pressure is related to the energy density ε by

P = −∂E

∂V
= ρ2 ∂E/A

∂ρ
= ρ

∂ε

∂ρ
− ε = ρµ − ε. (9)

The chemical potential is defined by

µ = ∂E

∂A
= ∂ε

∂ρ
. (10)

From Eqs. (8) and (9), we obtain

1

χ
= ρ2 ∂2ε

∂ρ2
. (11)

The compressibility χ (ρ) is a function of the density ρ

and the asymmetry parameter δ. Furthermore, one defines
the incompressibility at the saturation density in symmetric
nuclear matter by

K∞ = k2
F

∂2E/A

∂k2
F

∣∣∣∣
kF∞

= 9ρ2
0
∂2E/A

∂ρ2

∣∣∣∣
ρ0

. (12)

The relation between K∞ and χ is given by

K∞ = 9

ρ0χ (ρ0)
. (13)

It is worth keeping in mind that the incompressibility K∞ is
defined only at the saturation density ρ0, and in particular,
Eq. (13) is valid only for ρ = ρ0. Indeed, more generally, we
can define the density-dependent incompressibility (or bulk
modulus) as [24]

K(ρ) = 9

ρχ
= 9ρ2 ∂2E/A

∂ρ2
+ 18

ρ
P, (14)

which coincides with the incompressibility K∞ at the satura-
tion density.

The symmetry energy S(ρ) is defined by

S(ρ) = 1

2

∂2ε/ρ

∂δ2

∣∣∣∣
δ=0

. (15)

The symmetry energy can be expanded, around the saturation
density, as

S(ρ) = J + L

(
ρ − ρ0

3ρ0

)
+ 1

2
Ksym

(
ρ − ρ0

3ρ0

)2

, (16)
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FIG. 2. (Color online) (top) Pressure, incompressibility, and symmetry energy without pairing, and (bottom) the contributions of various
pairing interactions to these quantities. The HF energy εSkyrme is calculated using the SLy5 interaction. For details, see the caption to Fig. 1 and
the text.

where J is defined by J = S(ρ0), L = (3ρ0)(∂S/∂ρ)|ρ0 , and
Ksym = (9ρ2

0 )(∂2S/∂ρ2)|ρ0 .

C. Results

Figure 2 displays the pressure P in Eq. (9), the incom-
pressibility K(ρ) in Eq. (14), and the symmetry energy S(ρ)
in Eq. (16) without pairing (top), and the contribution of
pairing to these quantities (bottom), using the SLy5 interaction.
This contribution is calculated with the same equations, but
considering only the pairing term of the energy density in
Fig. 1. The same pairing interactions have been considered
here as in Fig. 1. Close to the saturation density, the contri-
bution from pairing is very small. This is also illustrated in
Table II: The pairing interaction has small effects at the
saturation density. In the case of the incompressibility K∞,
pairing can still produce a few percentage effect (e.g., K∞ is
changed from 230.2 MeV to 223.9 MeV in the case of the MSH
pairing interaction). The MSH, YS, IS 0.35 pairing interactions

TABLE II. Properties of nuclear matter for various pairing
interactions. The SLy5 Skyrme force is used for the mean field.

Pairing ρ0 E/A(ρ0) K∞ J L Ksym

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV)

No pairing 0.1604 −15.999 230.2 32.03 48.25 −112.3
IS η = 0.35 0.1601 −15.998 227.3 31.93 48.49 −129.7
IS η = 0.65 0.1603 −15.998 228.1 32.02 48.30 −113.7
IS η = 1.00 0.1604 −15.999 230.1 32.03 48.25 −112.3
MSH 0.1599 −15.998 223.9 31.33 55.77 −139.7
YS 0.1602 −15.998 227.0 31.39 52.04 13.2

modify the incompressibility by 3 to 6 MeV, that is, by about
2%. It should be noted that at the saturation density, the
contribution to the slope parameters of the symmetry energy,
L, and Ksym of the interactions MSH and YS is larger than
that of the other IS forces. The effects on L can be about 15%,
whereas Ksym can be modified in an important way. This is
related to the dependence of these pairing interactions on the
isovector density.

However, at lower densities, the pairing effects become
appreciably larger, as seen in Fig. 2. In the case of the
pure surface pairing, there are important contributions to
the pressure, incompressibility, and symmetry energy: These
quantities can be strongly affected by pairing, which can
lead to variations up to about a factor of 2. Other pairing
interactions also provide significant corrections to the pressure
and the incompressibility, typically, around 10%. In the case
of the symmetry energy, below ρ ≈ 0.1 fm−3, the IS + IV
pairing interactions (MSH and YS) predict an opposite and
positive contribution compared to the negative contributions
of IS pairing interactions. It should be noted that the pairing
contribution to these quantities is generally larger at densities
below saturation.

To obtain a more general view of the pairing effect on the
incompressibility, Table III displays the K∞ values obtained
for SLy5, LNS, Sk255, and Sk272 Skyrme functionals, with
various pairing interactions. The correction induced by the
pairing interaction IS 0.35 is the largest among the IS
interactions and reduces the incompressibility K∞ by about
3 MeV. The MSH interaction induces a correction of 6.3 MeV
on the incompressibility (Table II). It should be noted that
the pure surface pairing interaction provides no modification
of K∞. Depending on the Skyrme models, there shall also
be an effect because of the different effective masses m∗/m,
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TABLE III. Nuclear matter incompressibility K∞ (MeV) for
SLy5 [12], LNS [15], Sk255 [14], and Sk272 [14] Skyrme functionals.
The dependence of K∞ on the pairing interaction is displayed: mixed
(IS η = 0.35) and surface (IS η = 1.00).

Pairing SLy5 LNS Sk255 Sk272

No pairing 230.2 211.0 255.2 271.8
IS η = 0.35 227.3 208.4 251.3 268.3
IS η = 1.00 230.1 211.0 255.2 271.8

but they are incorporated in the renormalization of the pairing
interaction parameter v0 shown in Table I.

It is expected that the preceding pairing effects at low
densities may also affect finite nuclei. In the case of incom-
pressibility, we can define a finite nucleus value KA and expect
that this value will be affected by the pairing more than K∞
because of the presence of a lower density region, that is,
the nuclear surface. We analyze this point in the next section,
and we argue that a similar reasoning holds for the symmetry
energy.

III. LOCAL DENSITY APPROXIMATION

This section relates the general expressions in uniform
matter obtained in Sec. II with the observables in finite nuclei
in the LDA. The aim is to estimate the role of pairing in the
incompressibility and symmetry energy of finite nuclei in a
simple and transparent way. The validity of the LDA will be
estimated by comparing the predicted nuclei incompressibility
with the one obtained by a microscopic approach.

The binding energy per nucleon in the LDA reads

BA(N,Z) = BNucl(N,Z) + BCoul
Z2

A4/3
, (17)

where BNucl(N,Z) includes the bulk, surface, and pairing
contributions. It is defined by

BNucl(N,Z) = 1

A

∫
d3r ε(r), (18)

where ε(r) = ε[ρn(r), ρp(r)] = εSkyrme(r) + εpair(r), as was
defined in Eq. (1). The neutron and proton densities
ρn(r), ρp(r) can be obtained, in the present context, by means
of a spherical HF calculation. The pairing contribution to the
binding energy is defined by

Bpair(N,Z) = 1

A

∫
d3r εpair(r). (19)

BNucl can be expanded around the saturation density,

BNucl(N,Z) ≈ B∞ + 1

2
KA

(
ρ − ρ0

3ρ0

)2

+ SAδ2, (20)

where the incompressibility in nuclei, KA, is defined by KA =
KNucl + KCoul · Z2A−4/3, and

KNucl = 9ρ2
0
∂2BNucl(N,Z)

∂ρ2
, (21)

while the pairing contribution to the incompressibility is
defined by

Kpair = 9ρ2
0

∂2Bpair(N,Z)

∂ρ2
. (22)

The Coulomb contribution, KCoul, can be evaluated using, for
instance, the Thomas-Fermi approximation [cf. Eq. (A1) in
Ref. [25]]. It will not be included in the present work, but the
value obtained in Ref. [25] is −8 MeV < KCoul < −4 MeV,
depending on the interaction that is used.

The symmetry energy in finite nuclei, SA, is defined by

SA = 1

2

∂2BNucl(N,Z)

∂δ2

∣∣∣∣
δ=0

, (23)

and the contribution of the pairing correlations to SA is defined
by

Spair = 1

2

∂2Bpair(N,Z)

∂δ2

∣∣∣∣
δ=0

. (24)

Introducing the mass formula (18) into Eq. (21), one obtains

KNucl = ρ0

A

∫
d3r KNucl(r), (25)

with

KNucl(r) = ρ0

ρ
K[ρ(r)]. (26)

For small values of the density (ρ � 0.6ρ0, i.e., r � 5 fm in
120Sn), the incompressibility is found to be negative: This is
because of the spinodal instability in nuclear matter that is not
present in finite systems [26]. For this reason, the integral (25)
is limited to the region where KNucl(r) is positive. In this way,
the spurious component because of the spinodal instability is
removed.

Introducing the quantity

SA(r) = 1

2ρ0

∂2ε

∂δ2

∣∣∣∣
δ=0

= ρ

ρ0
S[ρ(r)], (27)

the symmetry energy in nuclei (23) reads

SA = ρ0

A

∫
d3r SA(r). (28)

We first perform a self-consistent HF calculation that
provides the neutron and proton densities in 120Sn. From these
densities, we deduce the radial distributions of the mean field
part and pairing part of ε(r) given in Eq. (1), KNucl(r) given
in Eq. (26), and SA(r) given in Eq. (27); these radial functions
are shown in Fig. 3. As expected from the results discussed in
the previous section, the pairing effects on ε(r), KNucl(r), and
SA(r) come from the low-density surface region.

From Eqs. (18), (25), and (28), we obtain, in the SLy5 case,
BA = −13.5 MeV, KNucl = 119.8 MeV, and SA = 25.7 MeV
without the contribution from the pairing correlations. The
Coulomb contribution has not been included. The value for
KNucl should be compared with that of 141 MeV obtained
by the constrained HFB (CHFB) calculations presented in the
next section (cf. Fig. 6). It should be noted that the CHFB
calculations take into account the contribution coming from
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FIG. 3. (Color online) (bottom) Radial dependence of ε(r), KNucl(r), and SA(r) for the various pairing interactions considered using the
SLy5 force in 120Sn within the LDA. (top) The contribution of the Skyrme term plus the kinetic term. See the caption to Fig. 1 and the text for
details.

the Coulomb interaction. This contribution is estimated to
be about 20 MeV in 120Sn, using the values of KCoul from
Ref. [25]. The good agreement between the LDA and the
CHFB results ensures that LDA provides a sound framework
to relate the nuclear matter incompressibility and the finite
nucleus one.

The contributions of pairing correlations to the binding
energy, the bulk modulus, and the symmetry energy are shown
in Table IV for the various pairing interactions considered. The
contribution of the surface-type pairing (IS η = 1.0) reduces
KA by about 5%, whereas, for the IS mixed-type pairing
(η = 0.35 or 0.65) and the IS + IV (MSH and YS) pairing
interactions, the effect on KA is predicted to be smaller. In
Table IV, it is also observed that pairing effects affect the
binding energy by few percent, up to 5% for the surface-type
pairing interaction. For the symmetry energy, pairing effects
are negligible, being below 1%, except for the IS + IV pairing
(MSH).

TABLE IV. Contributions of pairing correlations to the binding
energy, the incompressibility, and the symmetry energy in 120Sn. The
mean field is calculated by using the SLy5 interaction.

Pairing Bpair Kpair Spair

(MeV) (MeV) (MeV)

IS η = 0.35 −0.03 −0.5 −0.25
IS η = 0.65 −0.11 −3.9 −0.03
IS η = 1.00 −0.64 −6.0 −0.03
MSH −0.13 −3.2 −0.93
YS −0.05 −1.9 −0.24

IV. FINITE NUCLEI

In the previous section, the LDA has shown that the pairing
effect on the symmetry energy is negligible, whereas apprecia-
ble effects are observed in the case of the incompressibility. In
this section, the role of pairing effects on the finite nucleus
incompressibility KA is investigated using a microscopic
approach.

We use the sum rule approach to calculate the centroid
energy of the isoscalar GMR. It is known that the finite nucleus
incompressibility KA is related to that centroid energy by
means of the relation

EISGMR =
√

h̄2KA

m〈r2〉 , (29)

where m is the nucleon mass and 〈r2〉 denotes the ground-
state expectation value of the square radius. In a microscopic
approach, for the so-called scaling KA, we calculate the energy
as

EISGMR =
√

m1

m−1
, (30)

where the kth energy weighted sum rule is defined as

mk =
∑

i

Ek
i |〈i|Q̂|0〉|2, (31)

with the RPA excitation energy Ei and the isoscalar monopole
transition operator

Q̂ =
A∑

i=1

r2
i . (32)
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The m1 moment is evaluated by the double commutator using
the Thouless theorem [27]:

m1 = 2h̄2

A
〈r2〉. (33)

In the present HFB calculations, the energy cutoff is
60 MeV, and the jmax value is 15/2 in the case of IS pairing and
is extended to 25/2 for the IS + IV MSH pairing, which are the
cutoffs used in the design of these pairing interactions [13,16],
to ensure convergence of the results. It should be noted that the
strength v0 of the IS pairing interactions is adjusted in nuclei
for its corresponding jmax and energy cutoff. Therefore the
different values of jmax between IS and the IS + IV pairing
have little influence on the calculations.

Concerning the evaluation of the m−1 moment, the CHFB
approach is used. It should be noted that the extension of the
constrained HF method [2,28] to the CHFB case has been
recently demonstrated in Ref. [29] and employed also in
Ref. [6]. The CHFB Hamiltonian is built by adding the
constraint associated with the IS monopole operator, namely,

Ĥconstr = Ĥ + λQ̂, (34)

and the m−1 moment is obtained from the derivative of the
expectation value of the monopole operator on the CHFB
solution |λ〉:

m−1 = −1

2

[
∂

∂λ
〈λ|Q̂|λ〉

]
λ=0

. (35)

We first investigate the correlations between nuclear matter
incompressibility K∞ and finite nucleus KA, in the absence
of pairing correlations. This correlation has been found in all
the previous articles on the subject but is reported here as a
benchmark for further considerations concerning the effect of
pairing. For this purpose, we choose the doubly magic 208Pb
nucleus. Figure 4 displays KA (obtained with the CHF method)
versus K∞ for the four Skyrme interactions LNS, SLy5, Sk255,
and Sk272. These four interactions span a large range of
incompressibilities and have been fitted using different physics
inputs: the neutron matter EOS from realistic forces in the
case of SLy5, Brückner-HF calculations in nuclear matter in
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FIG. 4. K∞ vs KA for 208Pb obtained by the CHF method for
several Skyrme interactions.
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FIG. 5. K∞ vs KA for 114Sn obtained by the CHF and the CHFB
method with surface-type and mixed-type pairing interactions for
several Skyrme interactions.

the case of LNS, and the empirical properties of symmetric
uniform matter plus a few binding energies and charge radii
of selected nuclei (the same that had been used to fit some
relativistic functionals like NL3) in the case of Sk255 and
Sk272. In this sense, these interactions provide representative
samples of the Skyrme functionals.

It should be stressed that both KA and K∞ are here evaluated
consistently in a microscopic model. As expected, KA is
clearly correlated with K∞. To find the pairing effects, we
also study the case of the open-shell nuclei 114Sn and 120Sn
in Figs. 5 and 6, respectively. For each Skyrme interaction,
three results are shown: (1) the CHF result without pairing, (2)
the CHFB result using the surface-type pairing interaction,
and (3) the CHFB result using the mixed-type (η = 0.35)
pairing interaction. In the case of SLy5, the IS + IV MSH
pairing interaction is also used. The surface-type interaction
decreases the finite nucleus incompressibility KA by about
10% in 114Sn and 5% in 120Sn, whereas the mixed-type pairing
interaction has a negligible effect on KA. Conversely, it should
be noted that the mixed pairing interaction has some effect
on K∞, whereas the pure surface pairing interaction has a
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FIG. 6. Same as Fig. 5, but for 120Sn.
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negligible effect on K∞, as seen in Fig. 5. In the case of LNS,
the reduction of KA is smaller for the surface pairing, and an
increase of KA is even observed for the mixed pairing case.
In the SLy5 case, predictions using the IS + IV MSH pairing
interactions show no variation of KA but affect K∞.

To study how these conclusions in 114Sn are sensitive to
the nuclear shell structure, the results for 120Sn are displayed
in Fig. 6, where pairing effects are expected to be smaller
than in 114Sn because of the subshell closure. In this case,
the reduction of KA because of the surface-type pairing effect
drops to 5%. For the mixed pairing interaction, a small increase
of KA is observed. This feature is again more pronounced in
the LNS case. In the SLy5 case, predictions using the IS + IV
MSH pairing interactions show no variation of KA but affect
K∞. It should be noted that similar trends are observed with
the LDA predictions (see Table IV). Also, they are consistent
with previous studies [5,6]. To further study shell effects, the
same calculations have been performed on 126Sn, and a similar
pattern to Fig. 6 is found, showing that the present results are
rather independent from shell effects in open-shell nuclei.

Evidently, the pairing effects tend to decrease the finite
nucleus incompressibility KA in the surface pairing case,
whereas K∞ is decreased in the mixed pairing case. Hence
the question of constraining the pairing interaction through
precise (typical resolution of few hundreds of keV) GMR
measurement is raised. The systematic softness of open-shell
Sn and Cd isotopes measured recently [30–32] through the
energy of the GMR might be the sign of a surface pairing
interaction at work [6].

V. CONCLUSIONS

The effect of superfluidity on the incompressibility has
been studied in both nuclear matter and finite nuclei using
various pairing functionals. A small effect is observed on the

nuclear matter incompressibility at the saturation density and
the symmetry energy, but it is non-negligible on L and Ksym.

However, at lower density, the pairing effect on the
incompressibility is significant and can have an substantial
impact on neutron star studies or on the interpretation of
multifragmentation data. It has been shown that the LDA
provides a relevant framework for a qualitative understanding
and interpretation of the microscopic results. The effect of the
pairing correlations is localized near the surface of nuclei, and
the effect of the pairing correlations is to make slightly softer
nuclear EOS. Especially in the low-density region in nuclear
matter, the pairing effect is more noticeable. This may explain
why such effects are expected to happen in the surface of the
finite nuclei. In the case of the IS + IV pairing interaction, no
strong effect is observed on KA. In general, the pairing effects
on the finite nucleus incompressibility KA are more important
when the interaction is more surface type (larger η value).

This study shows that with respect to current experimental
uncertainties, the pairing effects should be considered when
extracting the incompressibility value from GMR data, which
can now reach an accuracy of several hundreds of keV [30].
Experimentally, it would be useful to measure the GMR
on isotopic chains, including both open-shell and doubly
magic nuclei such as 132Sn. Such measurements are starting
to be undertaken [30–32] and will be extended to unstable
nuclei [33].
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[5] J. Li, G. Colò, and J. Meng, Phys. Rev. C 78, 064304 (2008).
[6] E. Khan, Phys. Rev. C 80, 011307(R) (2009).
[7] E. Khan, Phys. Rev. C 80, 057302 (2009).
[8] G. F. Bertsch, C. A. Bertulani, W. Nazarewicz, N. Schunck, and

M. V. Stoitsov, Phys. Rev. C 79, 034306 (2009).
[9] A. W. Steiner, M. Prakash, J. M. Lattimer, and P. J. Ellis, Phys.

Rep. 411, 325 (2005).
[10] B. A. Li, L.-W. Chen, and C. M. Ko, Phys. Rep. 464, 113 (2008).
[11] A. Klimkiewicz et al., Phys. Rev. C 76, 051603(R) (2007);
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