713 research outputs found

    Calibrating Car-Following Models using Trajectory Data: Methodological Study

    Full text link
    The car-following behavior of individual drivers in real city traffic is studied on the basis of (publicly available) trajectory datasets recorded by a vehicle equipped with an radar sensor. By means of a nonlinear optimization procedure based on a genetic algorithm, we calibrate the Intelligent Driver Model and the Velocity Difference Model by minimizing the deviations between the observed driving dynamics and the simulated trajectory when following the same leading vehicle. The reliability and robustness of the nonlinear fits are assessed by applying different optimization criteria, i.e., different measures for the deviations between two trajectories. The obtained errors are in the range between~11% and~29% which is consistent with typical error ranges obtained in previous studies. In addition, we found that the calibrated parameter values of the Velocity Difference Model strongly depend on the optimization criterion, while the Intelligent Driver Model is more robust in this respect. By applying an explicit delay to the model input, we investigated the influence of a reaction time. Remarkably, we found a negligible influence of the reaction time indicating that drivers compensate for their reaction time by anticipation. Furthermore, the parameter sets calibrated to a certain trajectory are applied to the other trajectories allowing for model validation. The results indicate that ``intra-driver variability'' rather than ``inter-driver variability'' accounts for a large part of the calibration errors. The results are used to suggest some criteria towards a benchmarking of car-following models

    Universal Wait-Free Memory Reclamation

    Full text link
    In this paper, we present a universal memory reclamation scheme, Wait-Free Eras (WFE), for deleted memory blocks in wait-free concurrent data structures. WFE's key innovation is that it is completely wait-free. Although some prior techniques provide similar guarantees for certain data structures, they lack support for arbitrary wait-free data structures. Consequently, developers are typically forced to marry their wait-free data structures with lock-free Hazard Pointers or (potentially blocking) epoch-based memory reclamation. Since both these schemes provide weaker progress guarantees, they essentially forfeit the strong progress guarantee of wait-free data structures. Though making the original Hazard Pointers scheme or epoch-based reclamation completely wait-free seems infeasible, we achieved this goal with a more recent, (lock-free) Hazard Eras scheme, which we extend to guarantee wait-freedom. As this extension is non-trivial, we discuss all challenges pertaining to the construction of universal wait-free memory reclamation. WFE is implementable on ubiquitous x86_64 and AArch64 (ARM) architectures. Its API is mostly compatible with Hazard Pointers, which allows easy transitioning of existing data structures into WFE. Our experimental evaluations show that WFE's performance is close to epoch-based reclamation and almost matches the original Hazard Eras scheme, while providing the stronger wait-free progress guarantee

    The statistical properties of the city transport in Cuernavaca (Mexico) and Random matrix ensembles

    Full text link
    We analyze statistical properties of the city bus transport in Cuernavaca (Mexico) and show that the bus arrivals display probability distributions conforming those given by the Unitary Ensemble of random matrices.Comment: 4 pages, 3 figure

    Direct observation of twist mode in electroconvection in I52

    Full text link
    I report on the direct observation of a uniform twist mode of the director field in electroconvection in I52. Recent theoretical work suggests that such a uniform twist mode of the director field is responsible for a number of secondary bifurcations in both electroconvection and thermal convection in nematics. I show here evidence that the proposed mechanisms are consistent with being the source of the previously reported SO2 state of electroconvection in I52. The same mechanisms also contribute to a tertiary Hopf bifurcation that I observe in electroconvection in I52. There are quantitative differences between the experiment and calculations that only include the twist mode. These differences suggest that a complete description must include effects described by the weak-electrolyte model of electroconvection

    Interpreting the Wide Scattering of Synchronized Traffic Data by Time Gap Statistics

    Full text link
    Based on the statistical evaluation of experimental single-vehicle data, we propose a quantitative interpretation of the erratic scattering of flow-density data in synchronized traffic flows. A correlation analysis suggests that the dynamical flow-density data are well compatible with the so-called jam line characterizing fully developed traffic jams, if one takes into account the variation of their propagation speed due to the large variation of the netto time gaps (the inhomogeneity of traffic flow). The form of the time gap distribution depends not only on the density, but also on the measurement cross section: The most probable netto time gap in congested traffic flow upstream of a bottleneck is significantly increased compared to uncongested freeway sections. Moreover, we identify different power-law scaling laws for the relative variance of netto time gaps as a function of the sampling size. While the exponent is -1 in free traffic corresponding to statistically independent time gaps, the exponent is about -2/3 in congested traffic flow because of correlations between queued vehicles.Comment: For related publications see http://www.helbing.or

    Temporal Modulation of the Control Parameter in Electroconvection in the Nematic Liquid Crystal I52

    Full text link
    I report on the effects of a periodic modulation of the control parameter on electroconvection in the nematic liquid crystal I52. Without modulation, the primary bifurcation from the uniform state is a direct transition to a state of spatiotemporal chaos. This state is the result of the interaction of four, degenerate traveling modes: right and left zig and zag rolls. Periodic modulations of the driving voltage at approximately twice the traveling frequency are used. For a large enough modulation amplitude, standing waves that consist of only zig or zag rolls are stabilized. The standing waves exhibit regular behavior in space and time. Therefore, modulation of the control parameter represents a method of eliminating spatiotemporal chaos. As the modulation frequency is varied away from twice the traveling frequency, standing waves that are a superposition of zig and zag rolls, i.e. standing rectangles, are observed. These results are compared with existing predictions based on coupled complex Ginzburg-Landau equations

    Congested Traffic States in Empirical Observations and Microscopic Simulations

    Full text link
    We present data from several German freeways showing different kinds of congested traffic forming near road inhomogeneities, specifically lane closings, intersections, or uphill gradients. The states are localized or extended, homogeneous or oscillating. Combined states are observed as well, like the coexistence of moving localized clusters and clusters pinned at road inhomogeneities, or regions of oscillating congested traffic upstream of nearly homogeneous congested traffic. The experimental findings are consistent with a recently proposed theoretical phase diagram for traffic near on-ramps [D. Helbing, A. Hennecke, and M. Treiber, Phys. Rev. Lett. {\bf 82}, 4360 (1999)]. We simulate these situations with a novel continuous microscopic single-lane model, the ``intelligent driver model'' (IDM), using the empirical boundary conditions. All observations, including the coexistence of states, are qualitatively reproduced by describing inhomogeneities with local variations of one model parameter. We show that the results of the microscopic model can be understood by formulating the theoretical phase diagram for bottlenecks in a more general way. In particular, a local drop of the road capacity induced by parameter variations has practically the same effect as an on-ramp.Comment: Now published in Phys. Rev. E. Minor changes suggested by a referee are incorporated; full bibliographic info added. For related work see http://www.mtreiber.de/ and http://www.helbing.org

    The Effect of absorbing sites on the one-dimensional cellular automaton traffic flow with open boundaries

    Full text link
    The effect of the absorbing sites with an absorbing rate β0\beta_{0}, in both one absorbing site (one way out) and two absorbing sites (two ways out) in a road, on the traffic flow phase transition is investigated using numerical simulations in the one-dimensional cellular automaton traffic flow model with open boundaries using parallel dynamics.In the case of one way out, there exist a critical position of the way out ic1 i_{c1} below which the current is constant for β0\beta_{0}<<β0c2\beta_{0c2} and decreases when increasing β0\beta_{0} for β0\beta_{0}>>β0c2\beta_{0c2}. When the way out is located at a position greater than ic2 i_{c2}, the current increases with β0\beta_{0} for β0\beta_{0}<<β0c1\beta_{0c1} and becomes constant for any value of β0\beta_{0} greater than β0c1\beta_{0c1}. While, when the way out is located at any position between ic1 i_{c1} and ic2 i_{c2} (ic1 i_{c1}<<ic2 i_{c2}), the current increases, for β0\beta_{0}<<β0c1\beta_{0c1}, with β0\beta_{0} and becomes constant for β0c1\beta_{0c1}<<β0\beta_{0}<<β0c2\beta_{0c2} and decreases with β0\beta_{0} for β0\beta_{0}>>β0c2\beta_{0c2}. In the later case the density undergoes two successive first order transitions; from high density to maximal current phase at β0\beta_{0}==β0c1\beta_{0c1} and from intermediate density to the low one at β0\beta_{0}==β0c2\beta_{0c2}. In the case of two ways out located respectively at the positions i1 i_{1} and i2 i_{2}, the two successive transitions occur only when the distance i2i_{2}-i1i_{1} separating the two ways is smaller than a critical distance dcd_{c}. Phase diagrams in the (α,β0\alpha,\beta_{0}), (β,β0\beta,\beta_{0}) and (i1,β0i_{1},\beta_{0}) planes are established. It is found that the transitions between Free traffic, Congested traffic and maximal current phase are first order

    Quality of lessons, level of achievement in school classes, and individual progress

    Full text link
    In einem zusammenfassenden Überblick wird über die Ziele und Ergebnisse einer empirischen Untersuchung berichtet, die von der Annahme ausging, daß sich Schulklassen in Art und Ausmaß des Erreichens kognitiver Lernziele unterscheiden, daß diese Unterschiede mit der vom Lehrer beeinflußbaren Qualität des Unterrichts zusammenhängen und daß die Vermittlung entsprechender didaktischer Fähigkeiten Lehrer in die Lage versetzt, ihren Unterrichtserfolg zu verbessern, um unerwünschte Leistungsdifferenzen zwischen den Schülern abzubauen. Untersucht wurden Lehrer und Schüler fünfter Hauptschulklassen im Mathematikunterricht. Zwar konnte eine große Zahl deskriptiver und explikativer Hypothesen über die Qualität des Mathematikunterrichts und die Entwicklung der Schülerleistungen in diesem Fach bestätigt werden, doch erwiesen sich zwei Resultate als völlig erwartungswidrig: (1) Der Lehrer hat im Vergleich zu anderen schulischen und außerschulischen Einflußgrößen nur eine begrenzte Wirksamkeit auf die Egalisierung von Schülerleistungen. (2) Die Verringerung der Leistungsunterschiede in den untersuchten Klassen kam in der Regel nicht durch die (erwünschte) Verbesserung der schlechten, sondern durch die (unerwünschte) Verschlechterung der guten Schüler zustande. Diese desiIlusionierenden Ergebnisse werden im Hinblick auf die notwendig gewordenen projektinternen Konsequenzen und auf die Schlußfolgerungen für die Theorie eines zielerreichenden, leistungsegalisierenden Unterrichts diskutiert. (DIPF/Orig.

    Worm Structure in Modified Swift-Hohenberg Equation for Electroconvection

    Full text link
    A theoretical model for studying pattern formation in electroconvection is proposed in the form of a modified Swift-Hohenberg equation. A localized state is found in two dimension, in agreement with the experimentally observed ``worm" state. The corresponding one dimensional model is also studied, and a novel stationary localized state due to nonadiabatic effect is found. The existence of the 1D localized state is shown to be responsible for the formation of the two dimensional ``worm" state in our model
    corecore