625 research outputs found
On binary reflected Gray codes and functions
AbstractThe binary reflected Gray code function b is defined as follows: If m is a nonnegative integer, then b(m) is the integer obtained when initial zeros are omitted from the binary reflected Gray code of m.This paper examines this Gray code function and its inverse and gives simple algorithms to generate both. It also simplifies Conder's result that the jth letter of the kth word of the binary reflected Gray code of length n is 2n-2n-j-1â2n-2n-j-1-k/2âmod2by replacing the binomial coefficient by k-12n-j+1+12
An Activity Classifier based on Heart Rate and Accelerometer Data Fusion
The European project ProeTEX realized a novel set of prototypes based on smart garments
that integrate sensors for the real-time monitoring of physiological, activity-related and environmental
parameters of the emergency operators during their interventions. The availability of these parameters
and the emergency scenario suggest the implementation of novel classification methods aimed at
detecting dangerous status of the rescuer automatically, and based not only on the classical activityrelated
signals, rather on a combination of these data with the physiological status of the subject. Here
we propose a heart rate and accelerometer data fusion algorithm for the activity classification of
rescuers in the emergency context
Two-spin entanglement distribution near factorized states
We study the two-spin entanglement distribution along the infinite
chain described by the XY model in a transverse field; closed analytical
expressions are derived for the one-tangle and the concurrences ,
being the distance between the two possibly entangled spins, for values of the
Hamiltonian parameters close to those corresponding to factorized ground
states. The total amount of entanglement, the fraction of such entanglement
which is stored in pairwise entanglement, and the way such fraction distributes
along the chain is discussed, with attention focused on the dependence on the
anisotropy of the exchange interaction. Near factorization a characteristic
length-scale naturally emerges in the system, which is specifically related
with entanglement properties and diverges at the critical point of the fully
isotropic model. In general, we find that anisotropy rule a complex behavior of
the entanglement properties, which results in the fact that more isotropic
models, despite being characterized by a larger amount of total entanglement,
present a smaller fraction of pairwise entanglement: the latter, in turn, is
more evenly distributed along the chain, to the extent that, in the fully
isotropic model at the critical field, the concurrences do not depend on .Comment: 14 pages, 6 figures. Final versio
An Updated Algorithm Integrated With Patient Data for the Differentiation of Atypical Nevi From Early Melanomas: the idScore 2021
Introduction: It is well known that multiple patient-related risk factors contribute to the development of cutaneous melanoma, including demographic, phenotypic and anamnestic factors. Objectives: We aimed to investigate which MM risk factors were relevant to be incorporated in a risk scoring-classifier based clinico-dermoscopic algorithm. Methods: This retrospective study was performed on a monocentric dataset of 374 atypical melanocytic skin lesions sharing equivocal dermoscopic features, excised in the suspicion of malignancy. Dermoscopic standardized images of 258 atypical nevi (aN) and 116 early melanomas (eMM) were collected along with objective lesional data (i.e., maximum diameter, specific body site and body area) and 7 dermoscopic data. All cases were combined with a series of 10 MM risk factors, including demographic (2), phenotypic (5) and anamnestic (3) ones. Results: The proposed iDScore 2021 algorithm is composed by 9 variables (age, skin phototype I/II, personal/familiar history of MM, maximum diameter, location on the lower extremities (thighs/legs/ ankles/back of the feet) and 4 dermoscopic features (irregular dots and globules, irregular streaks, blue gray peppering, blue white veil). The algorithm assigned to each lesion a score from 0 to 18, reached an area under the ROC curve of 92% and, with a score threshold â„ 6, a sensitivity (SE) of 98.2% and a specificity (SP) of 50.4%, surpassing the experts in SE (+13%) and SP (+9%).Conclusions: An integrated checklist combining multiple anamnestic data with selected relevant dermoscopic features can be useful in the differential diagnosis and management of eMM and aN exhibiting with equivocal features
Line-field confocal optical coherence tomography: a new tool for non-invasive differential diagnosis of pustular skin disorders
Background The spectrum of pustular skin disorders (PSD) is large and particularly challenging, including inflammatory, infectious and amicrobial diseases. Moreover, although pustules represent the unifying clinical feature, they can be absent or not fully developed in the early stage of the disease. The line-field confocal optical coherence tomography (LC-OCT) is a recently developed imaging technique able to perform a non-invasive, in vivo, examination of the epidermis and upper dermis, reaching very high image resolution and virtual histology. Objectives We aimed to investigate the potentialities of LC-OCT in the non-invasive differential diagnosis of a series of 11 PSD with different aetiology, microscopic features, body location and incidence rates. Materials and Methods Complete LC-OCT imaging (i.e. 2D/3D frames, videos) was performed on a total of 19 patients (10 females and 9 males) aged between 35 and 79 years. Images were blindly evaluated and compared with corresponding histopathologic findings. Results The LC-OCT imaging was able to detect with high accuracy the pustule structure including shape, margins, morphology and cellular content, along with peculiar epidermal and adnexal alterations in each condition, including: Acute Generalized Exanthematous Pustulosis, Generalized pustular psoriasis, Generalized pustular figurate erythema, Subcorneal Pustular Dermatosis, Intraepidermal IgA pustulosis, Palmoplantar pustulosis, Palmoplantar pustular psoriasis. Herpetic whitlow, Acrodermatitis continua of Hallopeau, Vesicopustular Sweet syndrome and Vesicopustular Eosinophilic cellulitis, with pustular appearance, were also compared. Conclusions The new LC-OCT can represent a rapid, non-invasive and painless tool which can help differentiating among PSD of different aetiology and microscopic morphology in clinical mimickers in daily practice
UVA-1 phototherapy as adjuvant treatment for eosinophilic fasciitis: in vitro and in vivo functional characterization
Introduction: Eosinophilic fasciitis (EF) is a rare autoimmune disease causing progressive induration of dermal, hypodermal, and muscularis fascia. The exact pathogenesis is yet to be fully understood, and a validated therapy protocol still lacks. We here aimed to realize a clinicalâfunctional characterization of these patients. Materials and methods: A total of eight patients (five males, 45 years average) were treated with adjuvant high-dose UVA-1 phototherapy (90 J/cm), after having received the standard systemic immunosuppressive protocol (oral methylprednisolone switched to methotrexate). Body lesion mapping, Localized Scleroderma Assessment Tool (LoSCAT), Dermatology Life Quality Index (DLQI), High-Resolution Ultrasound (HRUS) (13-17MHz), and ultra HRUS (55â70 MHz) were performed at each examination time taking specific anatomical points. Gene expression analysis at a molecular level and in vitro UVA-1 irradiation was realized on lesional fibroblasts primary cultures. Results: The LoSCAT and the DLQI showed to decrease significantly starting from the last UVA-1 session. A significant reduction in muscularis fascia thickness (â50% on average) was estimated starting from 3 months after the last UVA-1 session and maintained up to 12 months follow-up. Tissues was detected by HRUS. The UVA-1 in vitro irradiation of lesional skin sites cells appeared not to affect their viability. Molecular genes analysis revealed a significant reduction of IL-1Ă and of TGF-Ă genes after phototherapy, while MMPs 1,2,9 gene expression was enhanced. Comment: These preliminary in vivo and in vitro findings suggest that UVA-1 phototherapy is a safe and useful adjuvant therapy able to elicit anti-inflammatory effects and stimulate tissue matrix digestion and remodeling at lesional sites
Decoherence times of universal two-qubit gates in the presence of broad-band noise
The controlled generation of entangled states of two quantum bits is a
fundamental step toward the implementation of a quantum information processor.
In nano-devices this operation is counteracted by the solid-state environment,
characterized by a broadband and non-monotonic power spectrum, often 1/f at low
frequencies. For single-qubit gates, incoherent processes due to fluctuations
acting on different time scales result in peculiar short- and long-time
behavior. Markovian noise gives rise to exponential decay with relaxation and
decoherence times, T1 and T2, simply related to the symmetry of the
qubit-environment coupling Hamiltonian. Noise with the 1/f power spectrum at
low frequencies is instead responsible for defocusing processes and algebraic
short-time behavior. In this paper, we identify the relevant decoherence times
of an entangling operation due to the different decoherence channels
originating from solid-state noise. Entanglement is quantified by concurrence,
which we evaluate in an analytic form employing a multi-stage approach. The
'optimal' operating conditions of reduced sensitivity to noise sources are
identified. We apply this analysis to a superconducting \sqrt{i-SWAP} gate for
experimental noise spectra.Comment: 35 pages, 11 figure
- âŠ