1,017 research outputs found

    Determination of an optimal response cut-off able to predict progression-free survival in patients with well-differentiated advanced pancreatic neuroendocrine tumours treated with sunitinib: an alternative to the current RECIST-defined response.

    Get PDF
    BACKGROUND: Sunitinib prolongs progression-free survival (PFS) in patients with advanced pancreatic neuroendocrine tumours (pNET). Response Evaluation Criteria in Solid Tumors (RECIST)-defined partial responses (PR; classically defined as ⩾30% size decrease from baseline) are infrequent. METHODS: Individual data of pNET patients from the phase II [NCT00056693] and pivotal phase III [NCT00428597] trials of sunitinib were analysed in this investigator-initiated, post hoc study. The primary objective was to determine the optimal RECIST (v.1.0) response cut-off value to identify patients who were progression-free at 11 months (median PFS in phase III trial); and the most informative time-point (highest area under the curve (AUC) by receiver operating characteristic (ROC) analysis and logistic regression) for prediction of benefit (PFS) from sunitinib. RESULTS: Data for 237 patients (85 placebo; 152 sunitinib (n=66.50 mg \u274-weeks on/2-weeks off\u27 schedule; n=86 \u2737.5 mg continuous daily dosing (CDD)\u27)) and 788 scans were analysed. The median PFS for sunitinib and placebo were 9.3 months (95% CI 7.6-12.2) and 5.4 months (95% CI 3.5-6.01), respectively (hazard ratio (HR) 0.43 (95% CI 0.29-0.62); P CONCLUSIONS: A 10% reduction within marker lesions identifies pNET patients benefiting from sunitinib treatment with implications for maintenance of dose intensity and future trial design

    Optimizing CIGB-300 intralesional delivery in locally advanced cervical cancer

    Get PDF
    Background:We conducted a phase 1 trial in patients with locally advanced cervical cancer by injecting 0.5 ml of the CK2-antagonist CIGB-300 in two different sites on tumours to assess tumour uptake, safety, pharmacodynamic activity and identify the recommended dose.Methods:Fourteen patients were treated with intralesional injections containing 35 or 70 mg of CIGB-300 in three alternate cycles of three consecutive days each before standard chemoradiotherapy. Tumour uptake was determined using 99 Tc-radiolabelled peptide. In situ B23/nucleophosmin was determined by immunohistochemistry.Results:Maximum tumour uptake for CIGB-300 70-mg dose was significantly higher than the one observed for 35 mg: 16.1±8.9 vs 31.3±12.9 mg (P=0.01). Both, AUC 24h and biological half-life were also significantly higher using 70 mg of CIGB-300 (P<0.001). Unincorporated CIGB-300 diffused rapidly to blood and was mainly distributed towards kidneys, and marginally in liver, lungs, heart and spleen. There was no DLT and moderate allergic-like reactions were the most common systemic side effect with strong correlation between unincorporated CIGB-300 and histamine levels in blood. CIGB-300, 70 mg, downregulated B23/nucleophosmin (P=0.03) in tumour specimens.Conclusion:Intralesional injections of 70 mg CIGB-300 in two sites (0.5 ml per injection) and this treatment plan are recommended to be evaluated in phase 2 studies.Fil: Sarduy, M. R.. Medical-surgical Research Center; CubaFil: García, I.. Centro de Ingeniería Genética y Biotecnología; CubaFil: Coca, M. A.. Clinical Investigation Center; CubaFil: Perera, A.. Clinical Investigation Center; CubaFil: Torres, L. A.. Clinical Investigation Center; CubaFil: Valenzuela, C. M.. Centro de Ingeniería Genética y Biotecnología; CubaFil: Baladrón, I.. Centro de Ingeniería Genética y Biotecnología; CubaFil: Solares, M.. Hospital Materno Ramón González Coro; CubaFil: Reyes, V.. Center For Genetic Engineering And Biotechnology Havana; CubaFil: Hernández, I.. Isotope Center; CubaFil: Perera, Y.. Centro de Ingeniería Genética y Biotecnología; CubaFil: Martínez, Y. M.. Medical-surgical Research Center; CubaFil: Molina, L.. Medical-surgical Research Center; CubaFil: González, Y. M.. Medical-surgical Research Center; CubaFil: Ancízar, J. A.. Centro de Ingeniería Genética y Biotecnología; CubaFil: Prats, A.. Clinical Investigation Center; CubaFil: González, L.. Centro de Ingeniería Genética y Biotecnología; CubaFil: Casacó, C. A.. Clinical Investigation Center; CubaFil: Acevedo, B. E.. Centro de Ingeniería Genética y Biotecnología; CubaFil: López Saura, P. A.. Centro de Ingeniería Genética y Biotecnología; CubaFil: Alonso, Daniel Fernando. Universidad Nacional de Quilmes; ArgentinaFil: Gómez, R.. Elea Laboratories; ArgentinaFil: Perea Rodríguez, S. E.. Center For Genetic Engineering And Biotechnology Havana; Cuba. Centro de Ingeniería Genética y Biotecnología; Cub

    Clinical outcome and prognostic factors for patients treated within the context of a phase I study: the Royal Marsden Hospital experience

    Get PDF
    The main aim of phase I trials is to evaluate the tolerability and pharmacology of a new compound. However, investigating the potential for clinical benefit is also a key objective. Our phase I trial portfolio incorporates a range of new drugs, including molecular targeted agents, sometimes given together with cytotoxic agents. We performed this analysis of response rate, progression-free (PFS) and overall survival (OS) to assess the extent of clinical benefit rate (CBR: partial response (PR)+stable disease (SD)) derived from current trials. We analysed 212 consecutive patients who were treated in 29 phase I studies, from January 2005 to June 2006. All patients had progression of disease prior to study entry. The median age was 58 years (range: 18–86) with a male/female ratio of 2 : 1. A total of 148 patients (70%) were treated in ‘first in human trials' involving biological agents (132 patients) or new cytotoxic compounds (16 patients) alone, and 64 patients (30%) received chemotherapy-based regimens with or without biological agents. After a median follow-up time of 34 weeks, the median PFS and OS were 11 and 43 weeks, respectively. The CBR was 53% (9% PR and 44% SD) after the first tumour evaluation after two cycles (between weeks 6 and 8) and has been maintained at 36 and 26% at 3 and 6 months, respectively. Treatment related deaths occurred in 0.47% of our patients and treatment had to be withdrawn in 11.8% of patients due to toxicity. A multivariate analysis (MVA) of 13 factors indicated that low albumin (<35 g l−1), lactate dehydrogenase>upper normal limit and >2 sites of metastasis were independent negative prognostic factors for OS. A risk score based on the MVA revealed that patients with a score of 2–3 had a significantly shorter OS compared to patients with a score of 0–1 (24.9 weeks, 95% CI 19.5–30.2 vs 74.1 weeks, 95% CI 53.2–96.2). This analysis shows that a significant number of patients who develop disease progression while receiving standard therapy derived benefit from participation in phase I trials. Risk scoring based on objective clinical parameters indicated that patients with a high score had a significantly shorter OS, and this may help in the process of patient selection for phase I trial entry

    KRAS Mutations and Primary Resistance of Lung Adenocarcinomas to Gefitinib or Erlotinib

    Get PDF
    BACKGROUND: Somatic mutations in the gene for the epidermal growth factor receptor (EGFR) are found in adenocarcinomas of the lung and are associated with sensitivity to the kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva). Lung adenocarcinomas also harbor activating mutations in the downstream GTPase, KRAS, and mutations in EGFR and KRAS appear to be mutually exclusive. METHODS AND FINDINGS: We sought to determine whether mutations in KRAS could be used to further enhance prediction of response to gefitinib or erlotinib. We screened 60 lung adenocarcinomas defined as sensitive or refractory to gefitinib or erlotinib for mutations in EGFR and KRAS. We show that mutations in KRAS are associated with a lack of sensitivity to either drug. CONCLUSION: Our results suggest that treatment decisions regarding use of these kinase inhibitors might be improved by determining the mutational status of both EGFR and KRAS

    Toxicity associated with combination oxaliplatin plus fluoropyrimidine with or without cetuximab in the MRC COIN trial experience

    Get PDF
    We present the preliminary toxicity data from the MRC COIN trial, a phase III randomised controlled trial of first-line therapy in advanced colorectal cancer, with particular reference to the addition of cetuximab to an oxaliplatin–fluoropyrimidine combination. A total of 804 patients were randomised between March 2005 and July 2006 from 78 centres throughout the United Kingdom. Patients were allocated to oxaliplatin plus fluoropyrimidine chemotherapy with or without the addition of weekly cetuximab. The choice of fluoropyrimidine (either 5-fluorouracil (5FU) or capecitabine) was decided by the treating physician and patient before randomisation. Toxicity data were collected from all patients. Two hundred and three patients received 5FU plus oxaliplatin (OxMdG, 25%), 333 oxaliplatin+capecitabine (Xelox, 41%), 102 received OxMdG+cetuximab (OxMdG+C, 13%) and 166 Xelox+cetuximab (21%). Percent grade 3/4 toxicities included diarrhoea 6, 15, 13 and 25%, nausea/vomiting 3, 7, 7 and 14% for OxMdG, Xelox, OxMdG+C and Xelox+C, respectively. Sixty-day all-cause mortality was 6, 5, 5 and 7%. Statistically significant differences were evident for patients receiving Xelox+cetuximab vs Xelox alone: diarrhoea relative risk (RR) 1.69 (1.17, 2.43, P=0.005) and nausea/vomiting RR 2.01 (1.16, 3.47, P=0.012). The excess toxicity observed in the oxaliplatin-, capecitabine-, cetuximab-treated patients led the trial management group to conclude that a capecitabine dose adjustment was required to maintain safety levels when using this regimen

    Gemcitabine and oxaliplatin (GEMOX) in gemcitabine refractory advanced pancreatic adenocarcinoma: a phase II study

    Get PDF
    Gemcitabine and oxaliplatin (GEMOX) are active as first-line therapy against advanced pancreatic cancer. This study aims to evaluate the activity and tolerability of this combination in patients refractory to standard gemcitabine (GEM). A total of 33 patients (median age of 57) were included with locally advanced and metastatic evaluable diseases, who had progressed during or following GEM therapy. The GEMOX regimen consisted of 1000 mg m−2 of GEM at a 100-min infusion on day 1, followed on day 2 by 100 mg m−2 of oxaliplatin at a 2-h infusion; a cycle that was given every 2 weeks. All patients received at least one cycle of GEMOX (median 5; range 1–29). Response by 31 evaluable patients was as follows: PR: 7/31(22.6%), s.d. ⩾8 weeks: 11/31(35.5%), s.d. <8 weeks: 1/31(3.2%), PD: 12/31(38.7%). Median duration of response and TTP were 4.5 and 4.2 months, respectively. Median survival was 6 months (range 0.5–21). Clinical benefit response was observed in 17/31 patients (54.8%). Grade III/IV non-neurologic toxicities occurred in 12/33 patients (36.3%), and grade I, II, and III neuropathy in 17(51%), 3(9%), and 4(12%) patients, respectively. GEMOX is a well-tolerated, active regimen that may provide a benefit to patients with advanced pancreatic cancer after progression following standard gemcitabine treatment

    Prospective assessment of a gene signature potentially predictive of clinical benefit in metastatic melanoma patients following MAGE-A3 immunotherapeutic (PREDICT)

    Get PDF
    Background: Genomic profiling of tumor tissue may aid in identifying predictive or prognostic gene signatures (GS) in some cancers. Retrospective gene expression profiling of melanoma and non-small-cell lung cancer led to the characterization of a GS associated with clinical benefit, including improved overall survival (OS), following immunization with the MAGE-A3 immunotherapeutic. The goal of the present study was to prospectively evaluate the predictive value of the previously characterized GS. Patients and methods: An open-label prospective phase II trial ('PREDICT') in patients with MAGE-A3-positive unresectable stage IIIB-C/IV-M1a melanoma. Results: Of 123 subjects who received the MAGE-A3 immunotherapeutic, 71 (58.7%) displayed the predictive GS (GS +). The 1-year OS rate was 83.1%/83.3% in the GS+/GS- populations. The rate of progression-free survival at 12 months was 5.8%/4.1% in GS+/GS- patients. The median time-to-treatment failure was 2.7/2.4 months (GS+/GS-). There was one complete response (GS-) and two partial responses (GS+). The MAGE-A3 immunotherapeutic was similarly immunogenic in both populations and had a clinically acceptable safety profile. Conclusion: Treatment of patients with MAGE-A3-positive unresectable stage IIIB-C/IV-M1a melanoma with the MAGE-A3 immunotherapeutic demonstrated an overall 1-year OS rate of 83.5%. GS- and GS+ patients had similar 1-year OS rates, indicating that in this study, GS was not predictive of outcome. Unexpectedly, the objective response rate was lower in this study than in other studies carried out in the same setting with the MAGE-A3 immunotherapeutic. Investigation of a GS to predict clinical benefit to adjuvant MAGE-A3 immunotherapeutic treatment is ongoing in another melanoma study. This study is registered at www.clinicatrials.gov NCT00942162

    Phase I study of intermittent and chronomodulated oral therapy with capecitabine in patients with advanced and/or metastatic cancer

    Get PDF
    BACKGROUND: The combination of capecitabine and gemcitabine at Fixed Dose Rate (FDR) has been demonstrated to be well tolerated, with apparent efficacy in patients with advanced cancers. FDR gemcitabine infusion leads to enhanced intracellular accumulation of drug and possible augmented clinical effect. The goals of this phase I study were to determine the maximum-tolerated dose (MTD) of chronomodulated capecitabine in patients with advanced cancer and to describe the dose-limiting toxicities (DLT), the safety profile of this way of administration. METHODS: Patients with advanced solid tumours who had failed to response to standard therapy or for whom no standard therapy was available were elegible for this study. Capecitabine was administered orally according to following schedule: 1/4 of dose at 8:00 a.m.; 1/4 of dose at 6:00 p.m. and 1/2 of dose at 11:00 p.m. each day for 14 consecutive days, followed by a 7-day rest period. RESULTS: All 27 patients enrolled onto the study were assessable for toxicity. The most common toxicities during the first two cycles of chemotherapy were fatigue, diarrhoea and hand foot syndrome (HFS). Only one out of the nine patients treated at capecitabine dose of 2,750 mg/m(2 )met protocol-specified DLT criteria (fatigue grade 4). However, at these doses the majority of cycles of therapy were delivered without dose reduction or delay. No other episodes of DLT were observed at the same dose steps and at the lower dose steps of capecitabine (1,500/1,750/2,000/2,250/2,500 mg/m(2)). The dose of 2,750 mg/m(2 )is recommended for further study. Tumor responses were observed in patients with metastatic breast and colorectal cancer. CONCLUSION: High doses of chronomodulated capecitabine can be administered with acceptable toxicity. The evidence of antitumor activity deserves further investigation in phase II combination chemotherapy studies
    corecore