31 research outputs found

    A Novel Interhemispheric Interaction: Modulation of Neuronal Cooperativity in the Visual Areas

    Get PDF
    Background: The cortical representation of the visual field is split along the vertical midline, with the left and the right hemi-fields projecting to separate hemispheres. Connections between the visual areas of the two hemispheres are abundant near the representation of the visual midline. It was suggested that they re-establish the functional continuity of the visual field by controlling the dynamics of the responses in the two hemispheres. Methods/Principal Findings: To understand if and how the interactions between the two hemispheres participate in processing visual stimuli, the synchronization of responses to identical or different moving gratings in the two hemi-fields were studied in anesthetized ferrets. The responses were recorded by multiple electrodes in the primary visual areas and the synchronization of local field potentials across the electrodes were analyzed with a recent method derived from dynamical system theory. Inactivating the visual areas of one hemisphere modulated the synchronization of the stimulus-driven activity in the other hemisphere. The modulation was stimulus-specific and was consistent with the fine morphology of callosal axons in particular with the spatio-temporal pattern of activity that axonal geometry can generate. Conclusions/Significance: These findings describe a new kind of interaction between the cerebral hemispheres and highlight the role of axonal geometry in modulating aspects of cortical dynamics responsible for stimulus detection and/or categorization

    Constant and variable aspects of axonal phenotype in cerebral cortex

    No full text
    In order to determine to what extent the terminal arbors of phylogenetically and functionally distant axons are constructed according to common rules, we have compared visual callosal axons in cats (CCC axons) with thalamocortical axons to the whisker representation in mice (MTC axons). Both similarities and differences were found. Maximal order of branching, branching angles, topological distribution of branches and boutons are similar for all axons, indicating strong constraints in arbor formation. CCC and MTC axons are indistinguishable for total arbor length and number of branches, although these parameters can vary across individual axons of each group. MTC axons have longer and bouton-richer end-branches (the 'transmission compartment') while, in CCC axons, proximal, boutonless branches (the 'conduction compartment') predominate. Therefore, the two classes of axons appear to be specialized for performing different types of operations, in agreement with the available electrophysiological data and computer simulations. Differences in the length of branches were also observed between MTC axons of normal and 'barrelless' mice, suggesting that this parameter can be regulated by conditions at the terminal sites

    Natural killer lymphoma/leukemia: an uncommon pediatric case with indolent course.

    No full text
    corecore