11 research outputs found

    CD44 Expression Profile Varies According to Maturational Subtypes and Molecular Profiles of Pediatric T-Cell Lymphoblastic Leukemia.

    Get PDF
    CD44 is a glycoprotein expressed in leucocytes and a marker of leukemia-initiating cells, being shown to be important in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). In this study, we have (i) identified the aberrant antigenic pattern of CD44 and its isoform CD44v6 in T-ALL; (ii) tested the association with different T-cell subtypes and genomic alterations; (iii) identified the impact of CD44 status in T-ALL outcome. Samples from 184 patients (123 T-ALL and 61 AML; <19 years) were analyzed throughout multiparametric flow cytometry. Mutations in N/KRAS, NOTCH1, FBXW7 as well as STIL-TAL1 and TLX3 rearrangements were detected using standard molecular techniques. CD44 expression was characterized in all T-ALL and AML cases. Compared with AML samples in which the median fluorescence intensity (MFI) was 79.1 (1-1272), T-ALL was relatively low, with MFI 43.2 (1.9-1239); CD44v6 expression was rarely found, MFI 1 (0.3-3.7). T-ALL immature subtypes (mCD3/CD1aneg) had a lower CD44 expression, MFI 57.5 (2.7-866.3), whereas mCD3/TCRγδpos cases had higher expressions, MFI 99.9 (16.4-866.3). NOTCH1 mut and STIL-TAL1 were associated with low CD44 expression, whereas N/KRAS mut and FBXW7 mut cases had intermediate expression. In relation to clinical features, CD44 expression was associated with tumor infiltrations (p = 0.065). However, no association was found with initial treatment responses and overall survival prediction. Our results indicate that CD44 is aberrantly expressed in T-ALL being influenced by different genomic alterations. Unraveling this intricate mechanism is required to place CD44 as a therapeutic target in T-ALL

    Chagasic Thymic Atrophy Does Not Affect Negative Selection but Results in the Export of Activated CD4+CD8+ T Cells in Severe Forms of Human Disease

    Get PDF
    Extrathymic CD4+CD8+ double-positive (DP) T cells are increased in some pathophysiological conditions, including infectious diseases. In the murine model of Chagas disease, it has been shown that the protozoan parasite Trypanosoma cruzi is able to target the thymus and induce alterations of the thymic microenvironment and the lymphoid compartment. In the acute phase, this results in a severe atrophy of the organ and early release of DP cells into the periphery. To date, the effect of the changes promoted by the parasite infection on thymic central tolerance has remained elusive. Herein we show that the intrathymic key elements that are necessary to promote the negative selection of thymocytes undergoing maturation during the thymopoiesis remains functional during the acute chagasic thymic atrophy. Intrathymic expression of the autoimmune regulator factor (Aire) and tissue-restricted antigen (TRA) genes is normal. In addition, the expression of the proapoptotic Bim protein in thymocytes was not changed, revealing that the parasite infection-induced thymus atrophy has no effect on these marker genes necessary to promote clonal deletion of T cells. In a chicken egg ovalbumin (OVA)-specific T-cell receptor (TCR) transgenic system, the administration of OVA peptide into infected mice with thymic atrophy promoted OVA-specific thymocyte apoptosis, further indicating normal negative selection process during the infection. Yet, although the intrathymic checkpoints necessary for thymic negative selection are present in the acute phase of Chagas disease, we found that the DP cells released into the periphery acquire an activated phenotype similar to what is described for activated effector or memory single-positive T cells. Most interestingly, we also demonstrate that increased percentages of peripheral blood subset of DP cells exhibiting an activated HLA-DR+ phenotype are associated with severe cardiac forms of human chronic Chagas disease. These cells may contribute to the immunopathological events seen in the Chagas disease

    CD44 expression profile varies according to maturational subtypes and molecular profiles of pediatric T-cell lymphoblastic leukemia

    No full text
    CD44 is a glycoprotein expressed in leucocytes and a marker of leukemia-initiating cells, being shown to be important in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). In this study, we have (i) identified the aberrant antigenic pattern of CD44 and its isoform CD44v6 in T-ALL; (ii) tested the association with different T-cell subtypes and genomic alterations; (iii) identified the impact of CD44 status in T-ALL outcome. Samples from 184 patients (123 T-ALL and 61 AML; &lt;19 years) were analyzed throughout multiparametric flow cytometry. Mutations in&nbsp;N/KRAS, NOTCH1, FBXW7&nbsp;as well as&nbsp;STIL-TAL1&nbsp;and&nbsp;TLX3&nbsp;rearrangements were detected using standard molecular techniques. CD44 expression was characterized in all T-ALL and AML cases. Compared with AML samples in which the median fluorescence intensity (MFI) was 79.1 (1&ndash;1272), T-ALL was relatively low, with MFI 43.2 (1.9&ndash;1239); CD44v6 expression was rarely found, MFI 1 (0.3-3.7). T-ALL immature subtypes (mCD3/CD1aneg) had a lower CD44 expression, MFI 57.5 (2.7&ndash;866.3), whereas mCD3/TCR&gamma;&delta;pos&nbsp;cases had higher expressions, MFI 99.9 (16.4&ndash;866.3).&nbsp;NOTCH1mut&nbsp;and&nbsp;STIL-TAL1&nbsp;were associated with low CD44 expression, whereas&nbsp;N/KRASmut&nbsp;and&nbsp;FBXW7mut&nbsp;cases had intermediate expression. In relation to clinical features, CD44 expression was associated with tumor infiltrations (p&nbsp;= 0.065). However, no association was found with initial treatment responses and overall survival prediction. Our results indicate that CD44 is aberrantly expressed in T-ALL being influenced by different genomic alterations. Unraveling this intricate mechanism is required to place CD44 as a therapeutic target in T-ALL.</p

    T-lymphoid/myeloid mixed phenotype acute leukemia and early T-cell precursor lymphoblastic leukemia similarities with NOTCH1 mutation as a good prognostic factor

    No full text
    Elda Pereira Noronha, Lu&iacute;sa Vieira Code&ccedil;o Marques, Francianne Gomes Andrade, Ingrid Sardou-Cezar, Filipe Vicente dos Santos-Bueno, Carolina Da Paz Zampier, Eug&ecirc;nia Terra-Granado, Maria S Pombo-de-OliveiraPaediatric Haematology-Oncology Program, Research Centre, Instituto Nacional de C&acirc;ncer, Rio de Janeiro, RJ, BrazilPurpose: T-lymphoid/Myeloid Mixed phenotype acute leukemia (T/M-MPAL) is ambiguous leukemia which overlaps with early T-cell precursor lymphoblastic leukemia (ETP-ALL). We have revisited the immunophenotyping profile of T/M-MPAL and ETP-ALL to identify differences and/or similarities, as these entities represent a therapeutic challenge in clinical practice.Patients and methods: A total of 26 ETP-ALL and 10 T/M-MPAL cases were identified among 857 cases of childhood leukemia (T-ALL, n=266 and AML, n=591) before any treatment decisions. The variables analyzed were age strata, sex, clinical features, immunophenotyping, and molecular aberrations. Immunophenotyping was performed in all samples using a panel of cytoplasm and membrane antibodies to identify the lineage and blast differentiation. The mutational status of STIL-TAL1, TLX3, RUNX1, NOTCH1, FBXW7, FLT3, IL7R, RAS, KTM2A, and CDKN2A/B was tested using RT-PCR, FISH, and PCR sequencing methods. The outcomes were assessed in terms of overall survival (OS).Results: The immunophenotypes were similar in ETP-ALL and T/M-MPAL, regarding the cellular expression of CD34, CD117, CD13/CD33, and CD11b, although CD2 and HLA-DR were more frequent in T/M-MPAL (p&lt;0.01). aMPO positivity and myelomonocyte differentiation were definitive in separating both entities. NOTCH1, FLT3-ITD, and N/KRAS mutations as well as TLX3 and KMT2A rearrangements were found in both ETP-ALL and T/M-MPAL. Thirty-one patients received ALL protocol whereas five had AML therapy. The overall 5-year survival rate (pOS) was 56.4% for patients treated using ALL protocols. No differences were observed between T/M-MPAL (pOS of 57%) and ETP-ALL (pOS of 56%) patients. The prognostic value of NOTCH1mut, was associated with significantly better OS (pOS 90%) than NOTCH1wt, (pOS 37%) (p=0.017).Conclusion: This research can potentially contribute to NOTCH1 as targeted therapy and prognostic assessment of T-cell mixed phenotype leukemia.Keywords: T-lymphoid/myeloid mixed phenotype acute leukemia, early T-cell precursor lymphoblastic leukemia, NOTCH1 mutation

    Thymocyte migration: an affair of multiple cellular interactions?

    No full text
    Cell migration is a crucial event in the general process of thymocyte differentiation. The cellular interactions involved in the control of this migration are beginning to be defined. At least chemokines and extracellular matrix proteins appear to be part of the game. Cells of the thymic microenvironment produce these two groups of molecules, whereas developing thymocytes express the corresponding receptors. Moreover, although chemokines and extracellular matrix can drive thymocyte migration per se, a combined role for these molecules appears to contribute to the resulting migration patterns of thymocytes in their various stages of differentiation. The dynamics of chemokine and extracellular matrix production and degradation is not yet well understood. However, matrix metalloproteinases are likely to play a role in the breakdown of intrathymic extracellular matrix contents. Thus, the physiological migration of thymocytes should be envisioned as a resulting vector of multiple, simultaneous and/or sequential stimuli involving chemokines, adhesive and de-adhesive extracellular matrix proteins, as well as matrix metalloproteinases. Accordingly, it is conceivable that any pathological change in any of these loops may result in the alteration of normal thymocyte migration. This seems to be the case in murine infection by the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas' disease. A better knowledge of the physiological mechanisms governing thymocyte migration will provide new clues for designing therapeutic strategies targeting developing T cells

    Thymocyte migration: an affair of multiple cellular interactions?

    No full text
    Cell migration is a crucial event in the general process of thymocyte differentiation. The cellular interactions involved in the control of this migration are beginning to be defined. At least chemokines and extracellular matrix proteins appear to be part of the game. Cells of the thymic microenvironment produce these two groups of molecules, whereas developing thymocytes express the corresponding receptors. Moreover, although chemokines and extracellular matrix can drive thymocyte migration per se, a combined role for these molecules appears to contribute to the resulting migration patterns of thymocytes in their various stages of differentiation. The dynamics of chemokine and extracellular matrix production and degradation is not yet well understood. However, matrix metalloproteinases are likely to play a role in the breakdown of intrathymic extracellular matrix contents. Thus, the physiological migration of thymocytes should be envisioned as a resulting vector of multiple, simultaneous and/or sequential stimuli involving chemokines, adhesive and de-adhesive extracellular matrix proteins, as well as matrix metalloproteinases. Accordingly, it is conceivable that any pathological change in any of these loops may result in the alteration of normal thymocyte migration. This seems to be the case in murine infection by the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas' disease. A better knowledge of the physiological mechanisms governing thymocyte migration will provide new clues for designing therapeutic strategies targeting developing T cells

    L'Égypte. [3], Ankh / Serge Grave, réal. ; Josette Niel-Poinssac, aut. ; Christiane Desroches-Noblecourt, cons. scient., présent. ; Alain Cuny, voix

    Get PDF
    Collection : Histoire ancienneCollection : Histoire ancienneRésumé : Le terme ankh serait à l'origine un hiéroglyphe symbole de l'Égypte et plus précisément du Nil, source de vie. Cette émission fixe une tranche de vie de la foule anonyme à l'aide de documents figurés ou écrits. C'est ainsi que sont évoqués : la vie rurale axée sur le régime du fleuve, la vie urbaine liée aux boutiques, aux petits métiers et à l'habitat d'une classe aisée (source : Média-Scérén)Durée : 00:25:10Thème : Histoir
    corecore