1,107 research outputs found

    Laplace's rule of succession in information geometry

    Full text link
    Laplace's "add-one" rule of succession modifies the observed frequencies in a sequence of heads and tails by adding one to the observed counts. This improves prediction by avoiding zero probabilities and corresponds to a uniform Bayesian prior on the parameter. The canonical Jeffreys prior corresponds to the "add-one-half" rule. We prove that, for exponential families of distributions, such Bayesian predictors can be approximated by taking the average of the maximum likelihood predictor and the \emph{sequential normalized maximum likelihood} predictor from information theory. Thus in this case it is possible to approximate Bayesian predictors without the cost of integrating or sampling in parameter space

    An auditory model of speaker size perception for voiced speech sounds

    Get PDF

    Adaptive Regret Minimization in Bounded-Memory Games

    Get PDF
    Online learning algorithms that minimize regret provide strong guarantees in situations that involve repeatedly making decisions in an uncertain environment, e.g. a driver deciding what route to drive to work every day. While regret minimization has been extensively studied in repeated games, we study regret minimization for a richer class of games called bounded memory games. In each round of a two-player bounded memory-m game, both players simultaneously play an action, observe an outcome and receive a reward. The reward may depend on the last m outcomes as well as the actions of the players in the current round. The standard notion of regret for repeated games is no longer suitable because actions and rewards can depend on the history of play. To account for this generality, we introduce the notion of k-adaptive regret, which compares the reward obtained by playing actions prescribed by the algorithm against a hypothetical k-adaptive adversary with the reward obtained by the best expert in hindsight against the same adversary. Roughly, a hypothetical k-adaptive adversary adapts her strategy to the defender's actions exactly as the real adversary would within each window of k rounds. Our definition is parametrized by a set of experts, which can include both fixed and adaptive defender strategies. We investigate the inherent complexity of and design algorithms for adaptive regret minimization in bounded memory games of perfect and imperfect information. We prove a hardness result showing that, with imperfect information, any k-adaptive regret minimizing algorithm (with fixed strategies as experts) must be inefficient unless NP=RP even when playing against an oblivious adversary. In contrast, for bounded memory games of perfect and imperfect information we present approximate 0-adaptive regret minimization algorithms against an oblivious adversary running in time n^{O(1)}.Comment: Full Version. GameSec 2013 (Invited Paper

    An efficient algorithm for learning with semi-bandit feedback

    Full text link
    We consider the problem of online combinatorial optimization under semi-bandit feedback. The goal of the learner is to sequentially select its actions from a combinatorial decision set so as to minimize its cumulative loss. We propose a learning algorithm for this problem based on combining the Follow-the-Perturbed-Leader (FPL) prediction method with a novel loss estimation procedure called Geometric Resampling (GR). Contrary to previous solutions, the resulting algorithm can be efficiently implemented for any decision set where efficient offline combinatorial optimization is possible at all. Assuming that the elements of the decision set can be described with d-dimensional binary vectors with at most m non-zero entries, we show that the expected regret of our algorithm after T rounds is O(m sqrt(dT log d)). As a side result, we also improve the best known regret bounds for FPL in the full information setting to O(m^(3/2) sqrt(T log d)), gaining a factor of sqrt(d/m) over previous bounds for this algorithm.Comment: submitted to ALT 201

    Effects of degenerate orbitals on the Hubbard model

    Full text link
    Stability of a metallic state in the two-orbital Hubbard model at half-filling is investigated. We clarify how spin and orbital fluctuations are enhanced to stabilize the formation of quasi-particles by combining dynamical mean field theory with the quantum Monte Carlo simulations. These analyses shed some light on the reason why the metallic phase is particularly stable when the intra- and inter-band Coulomb interactions are nearly equal.Comment: 3 pages, To appear in JPSJ Vol. 72, No. 5 200

    Microscopic Approach to Magnetism and Superconductivity of ff-Electron Systems with Filled Skutterudite Structure

    Full text link
    In order to gain a deep insight into ff-electron properties of filled skutterudite compounds from a microscopic viewpoint, we investigate the multiorbital Anderson model including Coulomb interactions, spin-orbit coupling, and crystalline electric field effect. For each case of nn=1\sim13, where nn is the number of ff electrons per rare-earth ion, the model is analyzed by using the numerical renormalization group (NRG) method to evaluate magnetic susceptibility and entropy of ff electron. In order to make further step to construct a simplified model which can be treated even in a periodic system, we also analyze the Anderson model constructed based on the jj-jj coupling scheme by using the NRG method. Then, we construct an orbital degenerate Hubbard model based on the jj-jj coupling scheme to investigate the mechanism of superconductivity of filled skutterudites. In the 2-site model, we carefully evaluate the superconducting pair susceptibility for the case of nn=2 and find that the susceptibility for off-site Cooper pair is clearly enhanced only in a transition region in which the singlet and triplet ground states are interchanged.Comment: 14 pages, 11 figures, Typeset with jpsj2.cl
    corecore