687 research outputs found

    Coherent Orthogonal Polynomials

    Full text link
    We discuss as a fundamental characteristic of orthogonal polynomials like the existence of a Lie algebra behind them, can be added to their other relevant aspects. At the basis of the complete framework for orthogonal polynomials we put thus --in addition to differential equations, recurrence relations, Hilbert spaces and square integrable functions-- Lie algebra theory. We start here from the square integrable functions on the open connected subset of the real line whose bases are related to orthogonal polynomials. All these one-dimensional continuous spaces allow, besides the standard uncountable basis x>{|x>}, for an alternative countable basis n>{|n>}. The matrix elements that relate these two bases are essentially the orthogonal polynomials: Hermite polynomials for the line and Laguerre and Legendre polynomials for the half-line and the line interval, respectively. Differential recurrence relations of orthogonal polynomials allow us to realize that they determine a unitary representation of a non-compact Lie algebra, whose second order Casimir C{\cal C} gives rise to the second order differential equation that defines the corresponding family of orthogonal polynomials. Thus, the Weyl-Heisenberg algebra h(1)h(1) with C=0{\cal C}=0 for Hermite polynomials and su(1,1)su(1,1) with C=1/4{\cal C}=-1/4 for Laguerre and Legendre polynomials are obtained. Starting from the orthogonal polynomials the Lie algebra is extended both to the whole space of the L2{\cal L}^2 functions and to the corresponding Universal Enveloping Algebra and transformation group. Generalized coherent states from each vector in the space L2{\cal L}^2 and, in particular, generalized coherent polynomials are thus obtained.Comment: 11 page

    Newtonian and Post-Newtonian approximations of the k = 0 Friedmann Robertson Walker Cosmology

    Get PDF
    In a previous paper we derived a post-Newtonian approximation to cosmology which, in contrast to former Newtonian and post-Newtonian cosmological theories, has a well-posed initial value problem. In this paper, this new post-Newtonian theory is compared with the fully general relativistic theory, in the context of the k = 0 Friedmann Robertson Walker cosmologies. It is found that the post-Newtonian theory reproduces the results of its general relativistic counterpart, whilst the Newtonian theory does not.Comment: 11 pages, Latex, corrected typo

    Integer Partitions and Exclusion Statistics

    Full text link
    We provide a combinatorial description of exclusion statistics in terms of minimal difference pp partitions. We compute the probability distribution of the number of parts in a random minimal pp partition. It is shown that the bosonic point p=0 p=0 is a repulsive fixed point for which the limiting distribution has a Gumbel form. For all positive pp the distribution is shown to be Gaussian.Comment: 16 pages, 4 .eps figures include

    A Radiation Scalar for Numerical Relativity

    Get PDF
    This letter describes a scalar curvature invariant for general relativity with a certain, distinctive feature. While many such invariants exist, this one vanishes in regions of space-time which can be said unambiguously to contain no gravitational radiation. In more general regions which incontrovertibly support non-trivial radiation fields, it can be used to extract local, coordinate-independent information partially characterizing that radiation. While a clear, physical interpretation is possible only in such radiation zones, a simple algorithm can be given to extend the definition smoothly to generic regions of space-time.Comment: 4 pages, 1 EPS figur

    Shear-Free Gravitational Waves in an Anisotropic Universe

    Get PDF
    We study gravitational waves propagating through an anisotropic Bianchi I dust-filled universe (containing the Einstein-de-Sitter universe as a special case). The waves are modeled as small perturbations of this background cosmological model and we choose a family of null hypersurfaces in this space-time to act as the histories of the wavefronts of the radiation. We find that the perturbations we generate can describe pure gravitational radiation if and only if the null hypersurfaces are shear-free. We calculate the gauge-invariant small perturbations explicitly in this case. How these differ from the corresponding perturbations when the background space-time is isotropic is clearly exhibited.Comment: 32 pages, accepted for publication in Physical Review

    Transverse frames for Petrov type I spacetimes: a general algebraic procedure

    Get PDF
    We develop an algebraic procedure to rotate a general Newman-Penrose tetrad in a Petrov type I spacetime into a frame with Weyl scalars Ψ1\Psi_{1} and Ψ3\Psi_{3} equal to zero, assuming that initially all the Weyl scalars are non vanishing. The new frame highlights the physical properties of the spacetime. In particular, in a Petrov Type I spacetime, setting Ψ1\Psi_{1} and Ψ3\Psi_{3} to zero makes apparent the superposition of a Coulomb-type effect Ψ2\Psi_{2} with transverse degrees of freedom Ψ0\Psi_{0} and Ψ4\Psi_{4}.Comment: 10 pages, submitted to Classical Quantum Gravit

    An explanation of the Newman-Janis Algorithm

    Full text link
    After the original discovery of the Kerr metric, Newman and Janis showed that this solution could be ``derived'' by making an elementary complex transformation to the Schwarzschild solution. The same method was then used to obtain a new stationary axisymmetric solution to Einstein's field equations now known as the Kerr-newman metric, representing a rotating massive charged black hole. However no clear reason has ever been given as to why the Newman-Janis algorithm works, many physicist considering it to be an ad hoc procedure or ``fluke'' and not worthy of further investigation. Contrary to this belief this paper shows why the Newman-Janis algorithm is successful in obtaining the Kerr-Newman metric by removing some of the ambiguities present in the original derivation. Finally we show that the only perfect fluid generated by the Newman-Janis algorithm is the (vacuum) Kerr metric and that the only Petrov typed D solution to the Einstein-Maxwell equations is the Kerr-Newman metric.Comment: 14 pages, no figures, submitted to Class. Quantum Gra

    A Conserved Bach Current

    Get PDF
    The Bach tensor and a vector which generates conformal symmetries allow a conserved four-current to be defined. The Bach four-current gives rise to a quasilocal two-surface expression for power per luminosity distance in the Vaidya exterior of collapsing fluid interiors. This is interpreted in terms of entropy generation.Comment: to appear in Class. Quantum Gra

    Adsorption of organic acids on magnetite nanoparticles, pH-dependent colloidal stability and salt tolerance

    Get PDF
    The adsorption of different organic acids and their influence on the pH-dependent charging, salt tolerance and so the colloidal stability of magnetite nanoparticles are compared. Adsorption isotherms of citric acid - CA, gallic acid - GA, poly(acrylic acid) - PAA, poly(acrylic-co-maleic acid) - PAM and humic acid - HA were measured. The pH-dependent charge state of MNPs was characterized by electrophoretic mobility and their aggregation by dynamic light scattering. The salt tolerance was tested in coagulation kinetic experiments. Although the adsorption capacities, the type of bonding (either H-bonds or metal ion-carboxylate complexes) and so the bond strengths are significantly different, the following general trends have been found. Small amount of organic acids at pH. <. ~8 (the pH of PZC of magnetite) - relevant condition in natural waters - only neutralize. s the positive charges, and so promotes the aggregation and sedimentation of nanoparticles. Greater amounts of organic acid, above the charge neutralization, cause the sign reversal of particle charge, and at high overcharging promote stabilization and dispersing. The thicker layer of PAA, PAM and HA provides better electrosteric stability than CA and GA. GA undergoes surface polymerization, thereby improving stabilization. The organic acids studied here eliminate completely the pH sensitivity of amphoteric magnetite, but only the polyanionic coverage provides significant increase in resistance against coagulating effects of salts at neutral pH commonly prevailing in natural waters
    corecore