10 research outputs found
Shot-noise spectroscopy of energy-resolved ballistic currents
We investigate the shot noise of nonequilibrium carriers injected into a
ballistic conductor and interacting via long-range Coulomb forces. Coulomb
interactions are shown to act as an energy analyzer of the profile of injected
electrons by means of the fluctuations of the potential barrier at the emitter
contact. We show that the details in the energy profile can be extracted from
shot-noise measurements in the Coulomb interaction regime, but cannot be
obtained from time-averaged quantities or shot-noise measurements in the
absence of interactions.Comment: 7 pages, 4 figure
Self-consistent theory of current and voltage noise in multimode ballistic conductors
Electron transport in a self-consistent potential along a ballistic two-terminal conductor has been investigated. We have derived general formulas which describe the nonlinear current-voltage characteristics, differential conductance, and low-frequency current and voltage noise assuming an arbitrary distribution function and correlation properties of injected electrons. The analytical results have been obtained for a wide range of biases: from equilibrium to high values beyond the linear-response regime. The particular case of a three-dimensional Fermi-Dirac injection has been analyzed. We show that the Coulomb correlations are manifested in the negative excess voltage noise, i.e., the voltage fluctuations under high-field transport conditions can be less than in equilibrium