1,209 research outputs found

    Phenotypic Changes in the Megakaryocyte-Platelet Lineage

    Get PDF
    Morphologic and phenotypic changes occur during the maturation of megakaryocytes (MK) from the pluripotent stem cell to platelets. As the MK acquires organelles, it also acquires membrane glycoproteins and granule contents. Platelet membrane GP IIb/IIIa and platelet peroxidase are present from early stages of maturation to the final product of the megakaryocyte, the platelet, while Ia-like antigen appears to be expressed only during early stages of maturation. The MK synthesizes increasing amounts of lysosomal enzymes, GP Ib, and alpha granule proteins as it matures from the megakaryoblast stage to the mature cell. The platelet contains only vestiges of a protein synthetic apparatus; it therefore has acquired most of its contents, except for serotonin, during the maturation of the MK

    Cloning of Lilium Longiflorum and Andropogon Gerardii by Tissue Culture of Leaf and Floral Parts

    Get PDF
    The Easter lily, L. longiflorum Thunb. Is known not only for its ornamental value, but also for its large chromosomes, making it ideal cytological material. Big bluestem, Andropogon gerardii Vitman, is a South Dakota native grass. It possesses many desirable characteristics and unique adaptations to this region. This research has primarily dealt with the development of methods for cloning the species L. longiflorum and A. gerardii by tissue culture of leaf and/or floral parts. The pattern of plantlet differentiation from the cultures was also histologically studied

    Galerkin least squares finite element method for the obstacle problem

    Get PDF
    We construct a consistent multiplier free method for the finite element solution of the obstacle problem. The method is based on an augmented Lagrangian formulation in which we eliminate the multiplier by use of its definition in a discrete setting. We prove existence and uniqueness of discrete solutions and optimal order a priori error estimates for smooth exact solutions. Using a saturation assumption we also prove an a posteriori error estimate. Numerical examples show the performance of the method and of an adaptive algorithm for the control of the discretization error

    Numerical Computations with H(div)-Finite Elements for the Brinkman Problem

    Full text link
    The H(div)-conforming approach for the Brinkman equation is studied numerically, verifying the theoretical a priori and a posteriori analysis in previous work of the authors. Furthermore, the results are extended to cover a non-constant permeability. A hybridization technique for the problem is presented, complete with a convergence analysis and numerical verification. Finally, the numerical convergence studies are complemented with numerical examples of applications to domain decomposition and adaptive mesh refinement.Comment: Minor clarifications, added references. Reordering of some figures. To appear in Computational Geosciences, final article available at http://www.springerlink.co

    Review of key causes and sources for N2O emmisions and NO3-leaching from organic arable crop rotations

    Get PDF
    Abstract. The emissions of nitrous oxide (N2O) and leaching of nitrate (NO3) have considerable negative impacts on climate and the environment. Although these environmental burdens are on average less per unit area in organic than in non-organic production, they are not smaller per unit of product. If organic farming is to maintain its goal of being an environmentally friendly production system, these emissions should be mitigated. We discuss the impact of possible triggers within organic arable farming practice for the risk of N2O emissions and NO3 leaching under European climatic conditions, and possible strategies to reduce these. Organic arable crop rotations can be characterised as diverse with frequent use of legumes, intercropping and organic fertilizers. The soil organic matter content and share of active organic matter, microbial and faunal activity are higher, soil structure better and yields lower, than in non-organic, arable crop rotations. Soil mineral nitrogen (SMN), N2O emissions and NO3 leaching are low under growing crops, but there is high potential for SMN accumulation and losses after crop termination or crop harvest. The risk for high N2O fluxes is increased when large amounts of herbage or organic fertilizers with readily available nitrogen (N) and carbon are incorporated into the soil or left on the surface. Freezing/thawing, drying/rewetting, compacted and/or wet soil and mixing with rotary harrow further enhance the risk for high N2O fluxes. These complex soil N dynamics mask the correlation between total N-input and N2O emissions from organic arable crop rotations. Incorporation of N rich plant residues or mechanical weeding followed by bare fallow increases the risk of nitrate leaching. In contrast, strategic use of deep-rooted crops with long growing seasons in the rotation reduces nitrate leaching risk. Reduced tillage can reduce N leaching if yields are maintained. Targeted treatment and use of herbage from green manures, crop residues and catch crops will increase N efficiency and reduce N2O emissions and NO3 leaching. Continued regular use of catch crops has the potential to reduce NO3 leaching but may enhance N2O emissions. A mixture of legumes and non-legumes (for instance grasses or cereals) are as efficient a catch crop as monocultures of non-legume species

    Solar wind interaction with comet 67P: impacts of corotating interaction regions

    Get PDF
    International audienceWe present observations from the Rosetta Plasma Consortium of the effects of stormy solar wind on comet 67P/Churyumov-Gerasimenko. Four corotating interaction regions (CIRs), where the first event has possibly merged with a coronal mass ejection, are traced from Earth via Mars (using Mars Express and Mars Atmosphere and Volatile EvolutioN mission) to comet 67P from October to December 2014. When the comet is 3.1–2.7 AU from the Sun and the neutral outgassing rate ∌1025–1026 s−1, the CIRs significantly influence the cometary plasma environment at altitudes down to 10–30 km. The ionospheric low-energy (∌5 eV) plasma density increases significantly in all events, by a factor of >2 in events 1 and 2 but less in events 3 and 4. The spacecraft potential drops below −20 V upon impact when the flux of electrons increases. The increased density is likely caused by compression of the plasma environment, increased particle impact ionization, and possibly charge exchange processes and acceleration of mass-loaded plasma back to the comet ionosphere. During all events, the fluxes of suprathermal (∌10–100 eV) electrons increase significantly, suggesting that the heating mechanism of these electrons is coupled to the solar wind energy input. At impact the magnetic field strength in the coma increases by a factor of 2–5 as more interplanetary magnetic field piles up around the comet. During two CIR impact events, we observe possible plasma boundaries forming, or moving past Rosetta, as the strong solar wind compresses the cometary plasma environment. We also discuss the possibility of seeing some signatures of the ionospheric response to tail disconnection events

    Spatial distribution of low-energy plasma around 2 comet 67P/CG from Rosetta measurements

    Get PDF
    International audienceWe use measurements from the Rosetta plasma consortium (RPC) Langmuir probe (LAP) and mutual impedance probe (MIP) to study the spatial distribution of low-energy plasma in the near-nucleus coma of comet 67P/Churyumov-Gerasimenko. The spatial distribution is highly structured with the highest density in the summer hemisphere and above the region connecting the two main lobes of the comet, i.e. the neck region. There is a clear correlation with the neutral density and the plasma to neutral density ratio is found to be ∌1-2·10 −6 , at a cometocentric distance of 10 km and at 3.1 AU from the sun. A clear 6.2 h modulation of the plasma is seen as the neck is exposed twice per rotation. The electron density of the collisonless plasma within 260 km from the nucleus falls of with radial distance as ∌1/r. The spatial structure indicates that local ionization of neutral gas is the dominant source of low-energy plasma around the comet

    Model for twin electromagnons and magnetically induced oscillatory polarization in multiferroic RMnO3_3

    Full text link
    We propose a model for the pair of electromagnon excitations observed in the class of multiferroic materials {\it R}MnO3_3 ({\it R} is a rare-earth ion). The model is based on a harmonic cycloid ground state interacting with a zone-edge magnon and its twin excitation separated in momentum space by two times the cycloid wave vector. The pair of electromagnons is activated by cross coupling between magnetostriction and spin-orbit interactions. Remarkably, the spectral weight of the twin electromagnon is directly related to the presence of a magnetically induced oscillatory polarization in the ground state. This leads to the surprising prediction that TbMnO3_3 has an oscillatory polarization with amplitude 50 times larger than its uniform polarization.Comment: 4 pages, 3 figure
    • 

    corecore