42 research outputs found

    Die Tuberkulinempfindlichkeit der Tuberkulosekranken in verschiedenen Lebensaltern

    No full text

    Keeping SARS-CoV-2 out: Vaccines, Filters, and Self-disinfecting Textiles

    Get PDF
    When the SARS-CoV-2 pandemic started,[1] science came to the immediate attention of the broad public. People and politicians were hanging on every word of medical doctors, virologists, molecular biologists, data scientists and many others in the hope of finding other protective measures than those used for centuries such as basic hygiene, distance, or quarantine. Here, at the Institute of Chemistry and Biotechnology at the Zurich University of Applied Sciences (ZHAW) we were also willing to provide scientific solutions to overcome the pandemic. Together with our partners from industry, we contributed to the development of a Swiss vaccine, are working on filters for active ventilated full protective suits and are developing tests to show the efficacy and safety of an active antiviral textile that allows controlled virus inactivation through an electrochemical reaction by applying a small current

    Effects of Er:YAG laser on bacteria associated with titanium surfaces and cellular response in vitro

    Full text link
    This in vitro study examined (a) the anti-bacterial efficacy of a pulsed erbium-doped yttrium aluminum garnet (Er:YAG) laser applied to Streptococcus sanguinis or Porphyromonas gingivalis adhered to either polished or microstructured titanium implant surfaces, (b) the response of osteoblast-like cells and (c) adhesion of oral bacteria to titanium surfaces after laser irradiation. Thereto, (a) bacteria adhered to titanium disks were irradiated with a pulsed Er:YAG laser (λ = 2,940 nm) at two different power settings: a lower mode (12.74 J/cm2 calculated energy density) and a higher mode (63.69 J/cm2). (b) After laser irradiation with both settings of sterile titanium, disks were seeded with 104 MG-63 cells/cm2. Adhesion and proliferation were determined after 1, 4, and 24 h by fluorescence microscopy and scanning electron microscopy. (c) Bacterial adhesion was also studied on irradiated (test) and non-irradiated (control) surfaces. Adhered P. gingivalis were effectively killed, even at the lower laser setting, independent of the material's surface. S. sanguinis cells adhered were effectively killed only at the higher setting of 63.69 J/cm2. Laser irradiation of titanium surfaces had no significant effects on (b) adhesion or proliferation of osteoblast-like MG-63 cells or (c) adhesion of both oral bacterial species in comparison to untreated surfaces. An effective decontamination of polished and rough titanium implant surfaces with a Er:YAG laser could only be achieved with a fluence of 63.69 J/cm2. Even though this setting may lead to certain surface alterations, no significant adverse effect on subsequent colonization and proliferation of MG-63 cells or increased bacterial adhesion was found in comparison to untreated control surfaces
    corecore