566 research outputs found

    Real Effects of Movements in Nominal Exchange Rates: Application to the Asian Crisis

    Get PDF
    This paper analyzes the ad hoc decision of three Asian countries to peg their currency to the U.S. dollar prior to the Asian crisis. It uses the Sjaastad model to estimate the optimal basket weights for Thailand, Korea, and Singapore. The analysis in this paper differs from the optimal basket research since we are not searching for an ad hoc optimal basket; rather, the basket is the solution to the problem. For Thailand and Korea, the correct weights of the dollar in the basket are estimated to be 44 and 65 percent, respectively, which differ significantly from the actual weight of 100 percent for the U.S. dollar in their currency basket prior to the 1997 Asian crisis. Singapore, with a weight of 85 percent for the U.S. currency, is closer to a dollar peg, and therefore was less affected by the large depreciation of the European currencies and the yen toward the dollar that occurred prior to the Asian exchange rate crisis. Besides the fact that Singapore had better economic fundamentals prior to the crisis, the fact that the optimal basket for that country is closer to a dollar peg is an additional reason why its economy was less severely hit by the crisis.optimum currency area, Asian crisis, exchange rate basket, currency peg

    Loop Representation of Wigner's Little Groups

    Get PDF
    Wigner's little groups are the subgroups of the Lorentz group whose transformations leave the momentum of a given particle invariant. They thus define the internal space-time symmetries of relativistic particles. These symmetries take different mathematical forms for massive and for massless particles. However, it is shown possible to construct one unified representation using a graphical description. This graphical approach allows us to describe vividly parity, time reversal, and charge conjugation of the internal symmetry groups. As for the language of group theory, the two-by-two representation is used throughout the paper. While this two-by-two representation is for spin-1/2 particles, it is shown possible to construct the representations for spin-0 particles, spin-1 particles, as well as for higher-spin particles, for both massive and massless cases. It is shown also that the four-by-four Dirac matrices constitute a two-by-two representation of Wigner's little group.Comment: LaTex 26 pages, with 5 figure

    Entangled Harmonic Oscillators and Space-time Entanglement

    Get PDF
    The mathematical basis for the Gaussian entanglement is discussed in detail, as well as its implications in the internal space-time structure of relativistic extended particles. It is shown that the Gaussian entanglement shares the same set of mathematical formulas with the harmonic oscillator in the Lorentz-covariant world. It is thus possible to transfer the concept of entanglement to the Lorentz-covariant picture of the bound state which requires both space and time separations between two constituent particles. These space and time variables become entangled as the bound state moves with a relativistic speed. It is shown also that our inability to measure the time-separation variable leads to an entanglement entropy together with a rise in the temperature of the bound state. As was noted by Paul A. M. Dirac in 1963, the system of two oscillators contains the symmetries of O(3,2) de Sitter group containing two O(3,1) Lorentz groups as its subgroups. Dirac noted also that the system contains the symmetry of the Sp(4) group which serves as the basic language for two-mode squeezed states. Since the Sp(4) symmetry contains both rotations and squeezes, one interesting case is the combination of rotation and squeeze resulting in a shear. While the current literature is mostly on the entanglement based on squeeze along the normal coordinates, the shear transformation is an interesting future possibility. The mathematical issues on this problem are clarified.Comment: 32 pages with 11 figure

    Wigner's Space-time Symmetries based on the Two-by-two Matrices of the Damped Harmonic Oscillators and the Poincar\'e Sphere

    Full text link
    The second-order differential equation for a damped harmonic oscillator can be converted to two coupled first-order equations, with two two-by-two matrices leading to the group Sp(2)Sp(2). It is shown that this oscillator system contains the essential features of Wigner's little groups dictating the internal space-time symmetries of particles in the Lorentz-covariant world. The little groups are the subgroups of the Lorentz group whose transformations leave the four-momentum of a given particle invariant. It is shown that the damping modes of the oscillator correspond to the little groups for massive and imaginary-mass particles respectively. When the system makes the transition from the oscillation to damping mode, it corresponds to the little group for massless particles. Rotations around the momentum leave the four-momentum invariant. This degree of freedom extends the Sp(2)Sp(2) symmetry to that of SL(2,c)SL(2,c) corresponding to the Lorentz group applicable to the four-dimensional Minkowski space. The Poincar\'e sphere contains the SL(2,c)SL(2,c) symmetry. In addition, it has a non-Lorentzian parameter allowing us to reduce the mass continuously to zero. It is thus possible to construct the little group for massless particles from that of the massive particle by reducing its mass to zero. Spin-1/2 particles and spin-1 particles are discussed in detail.Comment: Latex 42 pages, 7 figures, to be published in the Symmetr

    Role of DNA methylation of AHR1 and AHR2 promoters in differential sensitivity to PCBs in Atlantic Killifish, Fundulus heteroclitus

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Aquatic Toxicology 101 (2011): 288-294, doi:10.1016/j.aquatox.2010.10.010.Atlantic killifish (Fundulus heteroclitus) inhabiting the PCB-contaminated Superfund site in New Bedford Harbor (MA, USA) have evolved genetic resistance to the toxic effects of these compounds. They also lack induction of cytochrome P4501A (CYP1A) and other aryl hydrocarbon receptor (AHR)-dependent responses after exposure to AHR agonists, suggesting an overall down-regulation of the AHR signaling pathway. In this study, we hypothesized that the genetic resistance is due to altered AHR expression resulting from hypermethylation of DNA in the promoter region of AHR genes in fish inhabiting New Bedford Harbor. To test this hypothesis, we cloned and sequenced AHR1 and AHR2 promoter regions and employed bisulfite conversion-polymerase chain reaction (BS-PCR) followed by clonal analysis to compare the methylation status of CpG islands of AHR1 and AHR2 in livers of adult killifish collected from New Bedford Harbor and a reference site (Scorton Creek, MA). No significant differences in methylation profiles were observed in either AHR1 or AHR2 promoter regions between NBH and SC fish. However, hypermethylation of the AHR1 promoter correlated with low expression of transcripts in the liver in both populations. In comparison to AHR1, hepatic mRNA expression of AHR2 is high and its promoter is hypomethylated. Taken together, our results suggest that genetic resistance to contaminants in NBH fish is not due to altered methylation of AHR promoter regions, but that promoter methylation may control tissue-specific expression of AHR genes in killifish.This work is funded in part by the Superfund Basic Research Program at Boston University to MEH (NIH Grant P42ES007381) and the postdoctoral scholar program at WHOI, with funding provided by the Dr. George D. Grice Postdoctoral Scholarship Fund to NA

    Biobased Sprayable Mulch Films Suppressed Annual Weeds in Vegetable Crops

    Get PDF
    Biobased sprayable mulch (BSM) films are a potential alternative to herbicides, polyethylene plastic mulch film, and hand weeding for specialty crops. We developed a series of BSM films using locally available biomaterials [including corn (Zea mays) starch, glycerol, keratin hydrolysate, corn gluten meal, corn zein, eggshells, and isolated soy (Glycine max) protein] and tested their effects on weeds and crop yield during a total of seven greenhouse or field trials between 2017 and 2019 in Nebraska, USA. Application rates of BSM films applied in pots (greenhouse), planting holes in plastic film (field), or bed tops (field) ranged from 0.9 to 18.2 L•m-2 ; they were applied before and after the emergence of weeds. Weed control efficacy was variable, and results of greenhouse pots were rarely replicated under field conditions. Increasing the viscosity of the final suspension tested [BSM7; a mix of corn starch (72.8 g•L-1 ), glycerol (184.7 mL•L-1 ), keratin hydrolysate (733.3 mL•L-1 ), corn zein (19.8 g•L-1 ), and isolated soy protein (19.8 g•L-1 )] reduced weed biomass by more than 96% in field-grown kale (Brassica oleracea var. sabellica) when applied to bare soil bed tops before or after weed emergence, but kale yield in treated plots was not different from the weedy control. The results demonstrated the potential for postemergence applications of BSM films, which increase application timing flexibility for growers. Further research is needed to explore the effects of BSM films on soil properties and crop physiology and yield

    Nrf2 and Nrf2-related proteins in development and developmental toxicity : insights from studies in zebrafish (Danio rerio)

    Get PDF
    © The Author(s), 2015. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Free Radical Biology and Medicine 88B (2015): 275-289, doi:10.1016/j.freeradbiomed.2015.06.022.Oxidative stress is an important mechanism of chemical toxicity, contributing to developmental toxicity and teratogenesis as well as to cardiovascular and neurodegenerative diseases and diabetic embryopathy. Developing animals are especially sensitive to effects of chemicals that disrupt the balance of processes generating reactive species and oxidative stress, and those anti-oxidant defenses that protect against oxidative stress. The expression and inducibility of anti-oxidant defenses through activation of NFE2-related factor 2 (Nrf2) and related proteins is an essential process affecting the susceptibility to oxidants, but the complex interactions of Nrf2 in determining embryonic response to oxidants and oxidative stress are only beginning to be understood. The zebrafish (Danio rerio) is an established model in developmental biology and now also in developmental toxicology and redox signaling. Here we review the regulation of genes involved in protection against oxidative stress in developing vertebrates, with a focus on Nrf2 and related cap’n’collar (CNC)-basic-leucine zipper (bZIP) transcription factors. Vertebrate animals including zebrafish share Nfe2, Nrf1, Nrf2, and Nrf3 as well as a core set of genes that respond to oxidative stress, contributing to the value of zebrafish as a model system with which to investigate the mechanisms involved in regulation of redox signaling and the response to oxidative stress during embryolarval development. Moreover, studies in zebrafish have revealed nrf and keap1 gene duplications that provide an opportunity to dissect multiple functions of vertebrate NRF genes, including multiple sensing mechanisms involved in chemical-specific effects.This work was supported in part by National Institutes of Health grants R01ES016366 (MEH), R01ES015912 (JJS), and F32ES017585 (ART-L).2016-06-2
    • …
    corecore