775 research outputs found
Are critical finite-size scaling functions calculable from knowledge of an appropriate critical exponent?
Critical finite-size scaling functions for the order parameter distribution
of the two and three dimensional Ising model are investigated. Within a
recently introduced classification theory of phase transitions, the universal
part of the critical finite-size scaling functions has been derived by
employing a scaling limit that differs from the traditional finite-size scaling
limit. In this paper the analytical predictions are compared with Monte Carlo
simulations. We find good agreement between the analytical expression and the
simulation results. The agreement is consistent with the possibility that the
functional form of the critical finite-size scaling function for the order
parameter distribution is determined uniquely by only a few universal
parameters, most notably the equation of state exponent.Comment: 11 pages postscript, plus 2 separate postscript figures, all as
uuencoded gzipped tar file. To appear in J. Phys. A
Classical Phase Fluctuations in High Temperature Superconductors
Phase fluctuations of the superconducting order parameter play a larger role
in the cuprates than in conventional BCS superconductors because of the low
superfluid density of a doped insulator. In this paper, we analyze an XY model
of classical phase fluctuations in the high temperature superconductors using a
low-temperature expansion and Monte Carlo simulations. In agreement with
experiment, the value of the superfluid density at temperature T=0 is a quite
robust predictor of Tc, and the evolution of the superfluid density with T,
including its T-linear behavior at low temperature, is insensitive to
microscopic details.Comment: 4 pages, 1 figur
The brain as 'immunoprecipitator' of serum autoantibodies against N-Methyl-D-Aspartate receptor subunit NR1
Autoantibodies (AB) against N-methyl-D-aspartate receptor subunit NR1 (NMDAR1) are highly seroprevalent in health and disease. Symptomatic relevance may arise upon compromised blood-brain barrier (BBB). However, it remained unknown whether circulating NMDAR1 AB appear in the cerebrospinal fluid (CSF). Of n5271 subjects with CSF-serum pairs, 26 were NMDAR1 AB seropositive, but only 1 was CSF positive. Contrariwise, tetanus AB (non-brain-binding) were present in serum and CSF of all subjects, with CSF levels higher upon BBB dysfunction. Translational mouse experiments proved the hypothesis that the brain acts as an 'immunoprecipitator'; simultaneous injection of NMDAR1 AB and the non-brain-binding green fluorescent protein AB resulted in high detectability of the former in brain and the latter in CSF
Tricritical Points in the Sherrington-Kirkpatrick Model in the Presence of Discrete Random Fields
The infinite-range-interaction Ising spin glass is considered in the presence
of an external random magnetic field following a trimodal (three-peak)
distribution. The model is studied through the replica method and phase
diagrams are obtained within the replica-symmetry approximation. It is shown
that the border of the ferromagnetic phase may present first-order phase
transitions, as well as tricritical points at finite temperatures. Analogous to
what happens for the Ising ferromagnet under a trimodal random field, it is
verified that the first-order phase transitions are directly related to the
dilution in the fields (represented by ). The ferromagnetic boundary at
zero temperature also exhibits an interesting behavior: for , a single tricritical point occurs, whereas if
the critical frontier is completely continuous; however, for
, a fourth-order critical point appears. The stability
analysis of the replica-symmetric solution is performed and the regions of
validity of such a solution are identified; in particular, the Almeida-Thouless
line in the plane field versus temperature is shown to depend on the weight
.Comment: 23pages, 7 ps figure
Search for transient optical counterparts to high-energy IceCube neutrinos with Pan-STARRS1
In order to identify the sources of the observed diffuse high-energy neutrino
flux, it is crucial to discover their electromagnetic counterparts. IceCube
began releasing alerts for single high-energy ( TeV) neutrino
detections with sky localisation regions of order 1 deg radius in 2016. We used
Pan-STARRS1 to follow-up five of these alerts during 2016-2017 to search for
any optical transients that may be related to the neutrinos. Typically 10-20
faint ( mag) extragalactic transients are found within the
Pan-STARRS1 footprints and are generally consistent with being unrelated field
supernovae (SNe) and AGN. We looked for unusual properties of the detected
transients, such as temporal coincidence of explosion epoch with the IceCube
timestamp. We found only one transient that had properties worthy of a specific
follow-up. In the Pan-STARRS1 imaging for IceCube-160427A (probability to be of
astrophysical origin of 50 %), we found a SN PS16cgx, located at 10.0'
from the nominal IceCube direction. Spectroscopic observations of PS16cgx
showed that it was an H-poor SN at z = 0.2895. The spectra and light curve
resemble some high-energy Type Ic SNe, raising the possibility of a jet driven
SN with an explosion epoch temporally coincident with the neutrino detection.
However, distinguishing Type Ia and Type Ic SNe at this redshift is notoriously
difficult. Based on all available data we conclude that the transient is more
likely to be a Type Ia with relatively weak SiII absorption and a fairly normal
rest-frame r-band light curve. If, as predicted, there is no high-energy
neutrino emission from Type Ia SNe, then PS16cgx must be a random coincidence,
and unrelated to the IceCube-160427A. We find no other plausible optical
transient for any of the five IceCube events observed down to a 5
limiting magnitude of mag, between 1 day and 25 days after
detection.Comment: 20 pages, 6 figures, accepted to A&
Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data
Many Galactic sources of gamma rays, such as supernova remnants, are expected
to produce neutrinos with a typical energy cutoff well below 100 TeV. For the
IceCube Neutrino Observatory located at the South Pole, the southern sky,
containing the inner part of the Galactic plane and the Galactic Center, is a
particularly challenging region at these energies, because of the large
background of atmospheric muons. In this paper, we present recent advancements
in data selection strategies for track-like muon neutrino events with energies
below 100 TeV from the southern sky. The strategies utilize the outer detector
regions as veto and features of the signal pattern to reduce the background of
atmospheric muons to a level which, for the first time, allows IceCube
searching for point-like sources of neutrinos in the southern sky at energies
between 100 GeV and several TeV in the muon neutrino charged current channel.
No significant clustering of neutrinos above background expectation was
observed in four years of data recorded with the completed IceCube detector.
Upper limits on the neutrino flux for a number of spectral hypotheses are
reported for a list of astrophysical objects in the southern hemisphere.Comment: 19 pages, 17 figures, 2 table
- …