680 research outputs found

    Injunction Against Prosecution of Divorce Actions in Other States

    Get PDF
    Aims: The formation scenario of extended counter-rotating stellar disks in galaxies is still debated. In this paper, we study the S0 galaxy IC 719 known to host two large-scale counter-rotating stellar disks in order to investigate their formation mechanism. Methods: We exploit the large field of view and wavelength coverage of the Multi Unit Spectroscopic Explorer (MUSE) spectrograph to derive two-dimensional (2D) maps of the various properties of the counter-rotating stellar disks, such as age, metallicity, kinematics, spatial distribution, the kinematical and chemical properties of the ionized gas, and the dust map. Results: Due to the large wavelength range, and in particular to the presence of the Calcium Triplet \u3bb\u3bb8498, 8542, 8662 \uc5 (CaT hereafter), the spectroscopic analysis allows us to separate the two stellar components in great detail. This permits precise measurement of both the velocity and velocity dispersion of the two components as well as their spatial distribution. We derived a 2D map of the age and metallicity of the two stellar components, as well as the star formation rate and gas-phase metallicity from the ionized gas emission maps. Conclusions: The main stellar disk of the galaxy is kinematically hotter, older, thicker and with larger scale-length than the secondary disk. There is no doubt that the latter is strongly linked to the ionized gas component: they have the same kinematics and similar vertical and radial spatial distribution. This result is in favor of a gas accretion scenario over a binary merger scenario to explain the origin of counter-rotation in IC 719. One source of gas that may have contributed to the accretion process is the cloud that surrounds IC 719

    Metallicity of the polar disk in NGC4650A: constraints for cold accretion scenario

    Full text link
    We used high resolution spectra in the optical and near-infrared wavelength range to study the abundance ratios and metallicities of the HII regions associated with the polar disk in NGC4650A, in order to put constraints on the formation of the polar disk through cold gas accretion along a filament; this might be the most realistic way by which galaxies get their gas. We have compared the measured metallicities for the polar structure in NGC4650A with those of different morphological types and we have found that they are similar to those of late-type galaxies: such results is consistent with a polar disk formed by accretion from cosmic web filaments of external cold gas.Comment: Proceeding of the conference "Hunting for the Dark: The Hidden Side of Galaxy Formation", Malta, 19-23 Oct. 200

    The pseudobulge of NGC 1292

    Full text link
    The photometric and kinematic properties of Sb NGC 1292 suggest it hosts a pseudobulge. The properties of the stellar population of such a pseudobulge are consistent with a slow buildup within a scenario of secular evolution.Comment: 2 pages, 1 figure to appear in the proceedings of "Formation and Evolution of Galaxy Disks", Rome, October 2007, Eds. J. Funes and E. M. Corsin

    Dynamical modelling of luminous and dark matter in 17 Coma early-type galaxies

    Get PDF
    Dynamical models for 17 Coma early-type galaxies are presented. The galaxy sample consists of flattened, rotating as well as non-rotating early-types including cD and S0 galaxies with luminosities between M=-18.79 and M=-22.56. Kinematical long-slit observations cover at least the major and minor axis and extend to 1-4 effective radii. Axisymmetric Schwarzschild models are used to derive stellar mass-to-light ratios and dark halo parameters. In every galaxy models with a dark matter halo match the data better than models without. The statistical significance is over 95 percent for 8 galaxies, around 90 percent for 5 galaxies and for four galaxies it is not significant. For the highly significant cases systematic deviations between observed and modelled kinematics are clearly seen; for the remaining galaxies differences are more statistical in nature. Best-fit models contain 10-50 percent dark matter inside the half-light radius. The central dark matter density is at least one order of magnitude lower than the luminous mass density. The central phase-space density of dark matter is often orders of magnitude lower than in the luminous component, especially when the halo core radius is large. The orbital system of the stars along the major-axis is slightly dominated by radial motions. Some galaxies show tangential anisotropy along the minor-axis, which is correlated with the minor-axis Gauss-Hermite coefficient H4. Changing the balance between data-fit and regularisation constraints does not change the reconstructed mass structure significantly. Model anisotropies tend to strengthen if the weight on regularisation is reduced, but the general property of a galaxy to be radially or tangentially anisotropic, respectively, does not change. (abridged)Comment: 31 pages, 34 figures; accepted for publication in MNRA

    Using 3D Spectroscopy to Probe the Orbital Structure of Composite Bulges

    Full text link
    Detailed imaging and spectroscopic analysis of the centers of nearby S0 and spiral galaxies shows the existence of "composite bulges", where both classical bulges and disky pseudobulges coexist in the same galaxy. As part of a search for supermassive black holes in nearby galaxy nuclei, we obtained VLT-SINFONI observations in adaptive-optics mode of several of these galaxies. Schwarzschild dynamical modeling enables us to disentangle the stellar orbital structure of the different central components, and to distinguish the differing contributions of kinematically hot (classical bulge) and kinematically cool (pseudobulge) components in the same galaxy.Comment: LaTeX, 2 pages, 1 PDF figure. To appear in "Proceedings of IAU Symposium 309: Galaxies in 3D across the Universe", eds. B. L. Ziegler, F. Combes, H. Dannerbauer, and M. Verdug

    Spatially Resolved Spectroscopy of Coma Cluster Early-Type Galaxies - II. The Minor Axis Dataset

    Get PDF
    We present minor axis, offset major axis and one diagonal long slit spectra for 10 E and S0 galaxies of the Coma cluster drawn from a magnitude-limited sample studied before. We derive rotation curves, velocity dispersion profiles and the H3 and H4 coefficients of the Hermite decomposition of the line of sight velocity distribution. Moreover, we derive the line index profiles of Mg, Fe and Hβ line indices and assess their errors. The data will be used to construct dynamical models of the galaxies and study their stellar populations

    Spatially Resolved Spectroscopy of Coma Cluster Early‐Type Galaxies. IV. Completing the Data Set

    Get PDF
    The long-slit spectra obtained along the minor axis, offset major axis, and diagonal axis are presented for 12 E and S0 galaxies of the Coma Cluster drawn from a magnitude-limited sample studied before. The rotation curves, velocity dispersion profiles, and the H3 and H4 coefficients of the Hermite decomposition of the line-of-sight velocity distribution are derived. The radial profiles of the Hβ, Mg, and Fe line strength indices are measured too. In addition, the surface photometry of the central regions of a subsample of four galaxies recently obtained with the Hubble Space Telescope is presented. The data will be used to construct dynamical models of the galaxies and study their stellar populations
    corecore