7,927 research outputs found

    Three-body properties of low-lying 12^{12}Be resonances

    Get PDF
    We compute the three-body structure of the lowest resonances of 12^{12}Be considered as two neutrons around an inert 10^{10}Be core. This is an extension of the bound state calculations of 12^{12}Be into the continuum spectrum. We investigate the lowest resonances of angular momenta and parities, 0±0^{\pm}, 11^{-} and 2+2^{+}. Surprisingly enough, they all are naturally occurring in the three-body model. We calculate bulk structure dominated by small distance properties as well as decays determined by the asymptotic large-distance structure. Both 0+0^{+} and 2+2^{+} have two-body 10^{10}Be-neutron d-wave structure, while 11^{-} has an even mixture of pp and d-waves. The corresponding relative neutron-neutron partial waves are distributed among ss, pp, and d-waves. The branching ratios show different mixtures of one-neutron emission, three-body direct, and sequential decays. We argue for spin and parities, 0+0^{+}, 11^{-} and 2+2^{+}, to the resonances at 0.89, 2.03, 5.13, respectively. The computed structures are in agreement with existing reaction measurements.Comment: To be published in Physical Review

    Stochastics theory of log-periodic patterns

    Full text link
    We introduce an analytical model based on birth-death clustering processes to help understanding the empirical log-periodic corrections to power-law scaling and the finite-time singularity as reported in several domains including rupture, earthquakes, world population and financial systems. In our stochastics theory log-periodicities are a consequence of transient clusters induced by an entropy-like term that may reflect the amount of cooperative information carried by the state of a large system of different species. The clustering completion rates for the system are assumed to be given by a simple linear death process. The singularity at t_{o} is derived in terms of birth-death clustering coefficients.Comment: LaTeX, 1 ps figure - To appear J. Phys. A: Math & Ge

    Dendritic flux patterns in MgB2 films

    Full text link
    Magneto-opitcal studies of a c-oriented epitaxial MgB2 film with critical current density 10^7 A/cm^2 demonstrate a breakdown of the critical state at temperatures below 10 K [cond-mat/0104113]. Instead of conventional uniform and gradual flux penetration in an applied magnetic field, we observe an abrupt invasion of complex dendritic structures. When the applied field subsequently decreases, similar dendritic structures of the return flux penetrate the film. The static and dynamic properties of the dendrites are discussed.Comment: Accepted to Supercond. Sci. Techno

    Dynamic filtering of static dipoles in magnetoencephalography

    Get PDF
    We consider the problem of estimating neural activity from measurements of the magnetic fields recorded by magnetoencephalography. We exploit the temporal structure of the problem and model the neural current as a collection of evolving current dipoles, which appear and disappear, but whose locations are constant throughout their lifetime. This fully reflects the physiological interpretation of the model. In order to conduct inference under this proposed model, it was necessary to develop an algorithm based around state-of-the-art sequential Monte Carlo methods employing carefully designed importance distributions. Previous work employed a bootstrap filter and an artificial dynamic structure where dipoles performed a random walk in space, yielding nonphysical artefacts in the reconstructions; such artefacts are not observed when using the proposed model. The algorithm is validated with simulated data, in which it provided an average localisation error which is approximately half that of the bootstrap filter. An application to complex real data derived from a somatosensory experiment is presented. Assessment of model fit via marginal likelihood showed a clear preference for the proposed model and the associated reconstructions show better localisation

    Quantum theory of successive projective measurements

    Full text link
    We show that a quantum state may be represented as the sum of a joint probability and a complex quantum modification term. The joint probability and the modification term can both be observed in successive projective measurements. The complex modification term is a measure of measurement disturbance. A selective phase rotation is needed to obtain the imaginary part. This leads to a complex quasiprobability, the Kirkwood distribution. We show that the Kirkwood distribution contains full information about the state if the two observables are maximal and complementary. The Kirkwood distribution gives a new picture of state reduction. In a nonselective measurement, the modification term vanishes. A selective measurement leads to a quantum state as a nonnegative conditional probability. We demonstrate the special significance of the Schwinger basis.Comment: 6 page

    Mechanism for flux guidance by micrometric antidot arrays in superconducting films

    Get PDF
    A study of magnetic flux penetration in a superconducting film patterned with arrays of micron sized antidots (microholes) is reported. Magneto-optical imaging (MOI) of a YBCO film shaped as a long strip with perpendicular antidot arrays revealed both strong guidance of flux, and at the same time large perturbations of the overall flux penetration and flow of current. These results are compared with a numerical flux creep simulation of a thin superconductor with the same antidot pattern. To perform calculations on such a complex geometry, an efficient numerical scheme for handling the boundary conditions of the antidots and the nonlocal electrodynamics was developed. The simulations reproduce essentially all features of the MOI results. In addition, the numerical results give insight into all other key quantities, e.g., the electrical field, which becomes extremely large in the narrow channels connecting the antidots.Comment: 8 pages, 7 figure

    Current-induced dendritic magnetic instability in superconducting MgB2 films

    Full text link
    Magneto-optical imaging reveals that in superconducting films of MgB2 a transport current creates avalanche-like flux dynamics where highly branching dendritic penetration patterns are formed. The instability is triggered when the current exceeds a threshold value, and the superconductor, shaped as a long strip, is initially in the critical state. The instability exists up to 19 K, which is a much wider temperature range than in previous experiments, where dendrites were formed by applying a magnetic field. The instability is believed to be of thermo-magnetic origin indicating that thermal stabilization may become crucial in applications of MgB2.Comment: 3 pages, 3 figures, resubmitted to Appl.Phys.Let

    Synchronization and Coarsening (without SOC) in a Forest-Fire Model

    Full text link
    We study the long-time dynamics of a forest-fire model with deterministic tree growth and instantaneous burning of entire forests by stochastic lightning strikes. Asymptotically the system organizes into a coarsening self-similar mosaic of synchronized patches within which trees regrow and burn simultaneously. We show that the average patch length grows linearly with time as t-->oo. The number density of patches of length L, N(L,t), scales as ^{-2}M(L/), and within a mean-field rate equation description we find that this scaling function decays as e^{-1/x} for x-->0, and as e^{-x} for x-->oo. In one dimension, we develop an event-driven cluster algorithm to study the asymptotic behavior of large systems. Our numerical results are consistent with mean-field predictions for patch coarsening.Comment: 5 pages, 4 figures, 2-column revtex format. To be submitted to PR

    Superconductor strip with transport current: Magneto-optical study of current distribution and its relaxation

    Full text link
    The dynamics of magnetic flux distributions across a YBaCuO strip carrying transport current is measured using magneto-optical imaging at 20 K. The current is applied in pulses of 40-5000 ms duration and magnitude close to the critical one, 5.5 A. During the pulse some extra flux usually penetrates the strip, so the local field increases in magnitude. When the strip is initially penetrated by flux, the local field either increases or decreases depending both on the spatial coordinate and the current magnitude. Meanwhile, the current density always tends to redistribute more uniformly. Despite the relaxation, all distributions remain qualitatively similar to the Bean model predictions.Comment: RevTeX, 9 pages, 9 figures, submitted to Supercond. Sci. Technol. Revision: MO image and more refs are adde

    Topological field theory and physics

    Full text link
    Topological Yang-Mills theory with the Belavin-Polyakov-Schwarz-Tyupkin SU(2)SU(2) instanton is solved completely, revealing an underlying multi-link intersection theory. Link invariants are also shown to survive the coupling to a certain kind of matter (hyperinstantons). The physical relevance of topological field theory and its invariants is discovered. By embedding topological Yang-Mills theory into pure Yang-Mills theory, it is shown that the topological version TQFT of a quantum field theory QFT allows us to formulate consistently the perturbative expansion of QFT in the topologically nontrivial sectors. In particular, TQFT classifies the set of good measures over the instanton moduli space and solves the inconsistency problems of the previous approaches. The qualitatively new physical implications are pointed out. Link numbers in QCD are related to a non abelian analogoue of the Aharonov-Bohm effect.Comment: 23 pages, 1 figure. Revision: additional explanation
    corecore