23,635 research outputs found
On the asymmetric zero-range in the rarefaction fan
We consider the one-dimensional asymmetric zero-range process starting from a
step decreasing profile. In the hydrodynamic limit this initial condition leads
to the rarefaction fan of the associated hydrodynamic equation. Under this
initial condition and for totally asymmetric jumps, we show that the weighted
sum of joint probabilities for second class particles sharing the same site is
convergent and we compute its limit. For partially asymmetric jumps we derive
the Law of Large Numbers for the position of a second class particle under the
initial configuration in which all the positive sites are empty, all the
negative sites are occupied with infinitely many first class particles and with
a single second class particle at the origin. Moreover, we prove that among the
infinite characteristics emanating from the position of the second class
particle, this particle chooses randomly one of them. The randomness is given
in terms of the weak solution of the hydrodynamic equation through some sort of
renormalization function. By coupling the zero-range with the exclusion process
we derive some limiting laws for more general initial conditions.Comment: 22 pages, to appear in Journal of Statistical Physic
Update On The Code Intercomparison and Benchmark For Muon Fluence and Absorbed Dose Induced By An 18-GeV Electron Beam After Massive Iron Shielding
In 1974, Nelson, Kase and Svensson published an experimental investigation on
muon shielding around SLAC high-energy electron accelerators. They measured
muon fluence and absorbed dose induced by 14 and 18 GeV electron beams hitting
a copper/water beamdump and attenuated in a thick steel shielding. In their
paper, they compared the results with the theoretical models available at that
time.
In order to compare their experimental results with present model
calculations, we use the modern transport Monte Carlo codes MARS15, FLUKA2011
and GEANT4 to model the experimental setup and run simulations. The results are
then compared between the codes, and with the SLAC data.Comment: 14 pp. Presented paper at the 13th Meeting of the task-force on
Shielding aspects of Accelerators, Targets and Irradiation Facilities
(SATIF-13), HZDR, October 10-12, 2016, Dresden, Germany. arXiv admin note:
substantial text overlap with arXiv:1502.0168
Resonances Width in Crossed Electric and Magnetic Fields
We study the spectral properties of a charged particle confined to a
two-dimensional plane and submitted to homogeneous magnetic and electric fields
and an impurity potential. We use the method of complex translations to prove
that the life-times of resonances induced by the presence of electric field are
at least Gaussian long as the electric field tends to zero.Comment: 3 figure
Dynamical aspects of inextensible chains
In the present work the dynamics of a continuous inextensible chain is
studied. The chain is regarded as a system of small particles subjected to
constraints on their reciprocal distances. It is proposed a treatment of
systems of this kind based on a set Langevin equations in which the noise is
characterized by a non-gaussian probability distribution. The method is
explained in the case of a freely hinged chain. In particular, the generating
functional of the correlation functions of the relevant degrees of freedom
which describe the conformations of this chain is derived. It is shown that in
the continuous limit this generating functional coincides with a model of an
inextensible chain previously discussed by one of the authors of this work.
Next, the approach developed here is applied to a inextensible chain, called
the freely jointed bar chain, in which the basic units are small extended
objects. The generating functional of the freely jointed bar chain is
constructed. It is shown that it differs profoundly from that of the freely
hinged chain. Despite the differences, it is verified that in the continuous
limit both generating functionals coincide as it is expected.Comment: 15 pages, LaTeX 2e + various packages, 3 figures. The title has been
changed and three references have been added. A large part of the manuscript
has been rewritten to improve readability. Chapter 4 has been added. It
contains the construction of the generating functional without the
shish-kebab approximation and a new derivation of the continuous limit of the
freely jointed bar chai
Bosonic Field Propagators on Algebraic Curves
In this paper we investigate massless scalar field theory on non-degenerate
algebraic curves. The propagator is written in terms of the parameters
appearing in the polynomial defining the curve. This provides an alternative to
the language of theta functions. The main result is a derivation of the third
kind differential normalized in such a way that its periods around the homology
cycles are purely imaginary. All the physical correlation functions of the
scalar fields can be expressed in terms of this object. This paper contains a
detailed analysis of the techniques necessary to study field theories on
algebraic curves. A simple expression of the scalar field propagator is found
in a particular case in which the algebraic curves have internal symmetry
and one of the fields is located at a branch point.Comment: 26 pages, TeX + harvma
- …