209 research outputs found
Structure and Strength of Dislocation Junctions: An Atomic Level Analysis
The quasicontinuum method is used to simulate three-dimensional
Lomer-Cottrell junctions both in the absence and in the presence of an applied
stress. The simulations show that this type of junction is destroyed by an
unzipping mechanism in which the dislocations that form the junction are
gradually pulled apart along the junction segment. The calculated critical
stress needed for breaking the junction is comparable to that predicted by line
tension models. The simulations also demonstrate a strong influence of the
initial dislocation line directions on the breaking mechanism, an effect that
is neglected in the macroscopic treatment of the hardening effect of junctions.Comment: 4 pages, 3 figure
Finite Sized Atomistic Simulations of Screw Dislocations
The interaction of screw dislocations with an applied stress is studied using
atomistic simulations in conjunction with a continuum treatment of the role
played by the far field boundary condition. A finite cell of atoms is used to
consider the response of dislocations to an applied stress and this introduces
an additional force on the dislocation due to the presence of the boundary.
Continuum mechanics is used to calculate the boundary force which is
subsequently accounted for in the equilibrium condition for the dislocation.
Using this formulation, the lattice resistance curve and the associated Peierls
stress are calculated for screw dislocations in several close packed metals. As
a concrete example of the boundary force method, we compute the bow out of a
pinned screw dislocation; the line-tension of the dislocation is calculated
from the results of the atomistic simulations using a variational principle
that explicitly accounts for the boundary force.Comment: LaTex, 20 pages, 11 figure
Ab Initio Study of Screw Dislocations in Mo and Ta: A new picture of plasticity in bcc transition metals
We report the first ab initio density-functional study of screw
dislocations cores in the bcc transition metals Mo and Ta. Our results suggest
a new picture of bcc plasticity with symmetric and compact dislocation cores,
contrary to the presently accepted picture based on continuum and interatomic
potentials. Core energy scales in this new picture are in much better agreement
with the Peierls energy barriers to dislocation motion suggested by
experiments.Comment: 3 figures, 3 table
Spin dynamics from time-dependent density functional perturbation theory
We present a new method to model spin-wave excitations in magnetic solids, based on the Liouville-Lanczos approach to time-dependent density functional perturbation theory. This method avoids computationally expensive sums over empty states and naturally deals with the coupling between spin and charge fluctuations, without ever explicitly computing charge-density susceptibilities. Spin-wave excitations are obtained with one Lanczos chain per magnon wave-number and polarization, avoiding the solution of the linear-response problem for every individual value of frequency, as other state-of-the-art approaches do. Our method is validated by computing magnon dispersions in bulk Fe and Ni, resulting in agreement with previous theoretical studies in both cases, and with experiment in the case of Fe. The disagreement in the case of Ni is also comparable with that of previous computations
Heterogeneous melting near the Thwaites Glacier grounding line
Thwaites Glacier represents 15% of the ice discharge from the West Antarctic Ice Sheet and influences a wider catchment. Because it is grounded below sea level, Thwaites Glacier is thought to be susceptible to runaway retreat triggered at the grounding line (GL) at which the glacier reaches the ocean. Recent ice-flow acceleration2,8 and retreat of the ice front and GL indicate that ice loss will continue. The relative impacts of mechanisms underlying recent retreat are however uncertain. Here we show sustained GL retreat from at least 2011 to 2020 and resolve mechanisms of ice-shelf melt at the submetre scale. Our conclusions are based on observations of the Thwaites Eastern Ice Shelf (TEIS) from an underwater vehicle, extending from the GL to 3 km oceanward and from the ice–ocean interface to the sea floor. These observations show a rough ice base above a sea floor sloping upward towards the GL and an ocean cavity in which the warmest water exceeds 2 °C above freezing. Data closest to the ice base show that enhanced melting occurs along sloped surfaces that initiate near the GL and evolve into steep-sided terraces. This pronounced melting along steep ice faces, including in crevasses, produces stratification that suppresses melt along flat interfaces. These data imply that slope-dependent melting sculpts the ice base and acts as an important response to ocean warming
Expanding Paramedicine in the Community (EPIC): study protocol for a randomized controlled trial
BACKGROUND: The incidence of chronic diseases, including diabetes mellitus (DM), heart failure (HF) and chronic obstructive pulmonary disease (COPD) is on the rise. The existing health care system must evolve to meet the growing needs of patients with these chronic diseases and reduce the strain on both acute care and hospital-based health care resources. Paramedics are an allied health care resource consisting of highly-trained practitioners who are comfortable working independently and in collaboration with other resources in the out-of-hospital setting. Expanding the paramedic’s scope of practice to include community-based care may decrease the utilization of acute care and hospital-based health care resources by patients with chronic disease. METHODS/DESIGN: This will be a pragmatic, randomized controlled trial comparing a community paramedic intervention to standard of care for patients with one of three chronic diseases. The objective of the trial is to determine whether community paramedics conducting regular home visits, including health assessments and evidence-based treatments, in partnership with primary care physicians and other community based resources, will decrease the rate of hospitalization and emergency department use for patients with DM, HF and COPD. The primary outcome measure will be the rate of hospitalization at one year. Secondary outcomes will include measures of health system utilization, overall health status, and cost-effectiveness of the intervention over the same time period. Outcome measures will be assessed using both Poisson regression and negative binomial regression analyses to assess the primary outcome. DISCUSSION: The results of this study will be used to inform decisions around the implementation of community paramedic programs. If successful in preventing hospitalizations, it has the ability to be scaled up to other regions, both nationally and internationally. The methods described in this paper will serve as a basis for future work related to this study. TRIAL REGISTRATION: ClinicalTrials.gov: NCT02034045. Date: 9 January 2014. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1745-6215-15-473) contains supplementary material, which is available to authorized users
- …