1,147 research outputs found
Implications of an arithmetical symmetry of the commutant for modular invariants
We point out the existence of an arithmetical symmetry for the commutant of
the modular matrices S and T. This symmetry holds for all affine simple Lie
algebras at all levels and implies the equality of certain coefficients in any
modular invariant. Particularizing to SU(3)_k, we classify the modular
invariant partition functions when k+3 is an integer coprime with 6 and when it
is a power of either 2 or 3. Our results imply that no detailed knowledge of
the commutant is needed to undertake a classification of all modular
invariants.Comment: 17 pages, plain TeX, DIAS-STP-92-2
Automorphisms of the affine SU(3) fusion rules
We classify the automorphisms of the (chiral) level-k affine SU(3) fusion
rules, for any value of k, by looking for all permutations that commute with
the modular matrices S and T. This can be done by using the arithmetic of the
cyclotomic extensions where the problem is naturally posed. When k is divisible
by 3, the automorphism group (Z_2) is generated by the charge conjugation C. If
k is not divisible by 3, the automorphism group (Z_2 x Z_2) is generated by C
and the Altsch\"uler--Lacki--Zaugg automorphism. Although the combinatorial
analysis can become more involved, the techniques used here for SU(3) can be
applied to other algebras.Comment: 21 pages, plain TeX, DIAS-STP-92-4
Note on nonequilibrium stationary states and entropy
In transformations between nonequilibrium stationary states, entropy might be
a not well defined concept. It might be analogous to the ``heat content'' in
transformations in equilibrium which is not well defined either, if they are
not isochoric ({\it i.e.} do involve mechanical work). Hence we conjecture that
un a nonequilbrium stationary state the entropy is just a quantity that can be
transferred or created, like heat in equilibrium, but has no physical meaning
as ``entropy content'' as a property of the system.Comment: 4 page
Binary jumps in continuum. II. Non-equilibrium process and a Vlasov-type scaling limit
Let denote the space of all locally finite subsets (configurations)
in . A stochastic dynamics of binary jumps in continuum is a
Markov process on in which pairs of particles simultaneously hop over
. We discuss a non-equilibrium dynamics of binary jumps. We prove
the existence of an evolution of correlation functions on a finite time
interval. We also show that a Vlasov-type mesoscopic scaling for such a
dynamics leads to a generalized Boltzmann non-linear equation for the particle
density
The free energy in a class of quantum spin systems and interchange processes
We study a class of quantum spin systems in the mean-field setting of the
complete graph. For spin the model is the Heisenberg ferromagnet,
for general spin it has a probabilistic representation
as a cycle-weighted interchange process. We determine the free energy and the
critical temperature (recovering results by T\'oth and by Penrose when
). The critical temperature is shown to coincide (as a function of
) with that of the state classical Potts model, and the phase
transition is discontinuous when .Comment: 22 page
Pre-logarithmic and logarithmic fields in a sandpile model
We consider the unoriented two-dimensional Abelian sandpile model on the
half-plane with open and closed boundary conditions, and relate it to the
boundary logarithmic conformal field theory with central charge c=-2. Building
on previous results, we first perform a complementary lattice analysis of the
operator effecting the change of boundary condition between open and closed,
which confirms that this operator is a weight -1/8 boundary primary field,
whose fusion agrees with lattice calculations. We then consider the operators
corresponding to the unit height variable and to a mass insertion at an
isolated site of the upper half plane and compute their one-point functions in
presence of a boundary containing the two kinds of boundary conditions. We show
that the scaling limit of the mass insertion operator is a weight zero
logarithmic field.Comment: 18 pages, 9 figures. v2: minor corrections + added appendi
A test for a conjecture on the nature of attractors for smooth dynamical systems
Dynamics arising persistently in smooth dynamical systems ranges from regular
dynamics (periodic, quasiperiodic) to strongly chaotic dynamics (Anosov,
uniformly hyperbolic, nonuniformly hyperbolic modelled by Young towers). The
latter include many classical examples such as Lorenz and H\'enon-like
attractors and enjoy strong statistical properties.
It is natural to conjecture (or at least hope) that most dynamical systems
fall into these two extreme situations. We describe a numerical test for such a
conjecture/hope and apply this to the logistic map where the conjecture holds
by a theorem of Lyubich, and to the Lorenz-96 system in 40 dimensions where
there is no rigorous theory. The numerical outcome is almost identical for both
(except for the amount of data required) and provides evidence for the validity
of the conjecture.Comment: Accepted version. Minor modifications from previous versio
R-local Delaunay inhibition model
Let us consider the local specification system of Gibbs point process with
inhib ition pairwise interaction acting on some Delaunay subgraph specifically
not con taining the edges of Delaunay triangles with circumscribed circle of
radius grea ter than some fixed positive real value . Even if we think that
there exists at least a stationary Gibbs state associated to such system, we do
not know yet how to prove it mainly due to some uncontrolled "negative"
contribution in the expression of the local energy needed to insert any number
of points in some large enough empty region of the space. This is solved by
introducing some subgraph, called the -local Delaunay graph, which is a
slight but tailored modification of the previous one. This kind of model does
not inherit the local stability property but satisfies s ome new extension
called -local stability. This weakened property combined with the local
property provides the existence o f Gibbs state.Comment: soumis \`{a} Journal of Statistical Physics 27 page
Some Applications of the Lee-Yang Theorem
For lattice systems of statistical mechanics satisfying a Lee-Yang property
(i.e., for which the Lee-Yang circle theorem holds), we present a simple proof
of analyticity of (connected) correlations as functions of an external magnetic
field h, for Re h > 0 or Re h < 0. A survey of models known to have the
Lee-Yang property is given. We conclude by describing various applications of
the aforementioned analyticity in h.Comment: 16 page
- …