11 research outputs found

    Zur biologie von hyptiotes paradoxus

    No full text

    Hyper-X Program Status

    No full text
    This paper provides an overview of the objectives and status of the Hyper-X program, which is tailored to move hypersonic, airbreathing vehicle technology from the laboratory environment to the flight environment. The first Hyper-X research vehicle (HXRV), designated X-43, is being prepared at the Dryden Flight Research Center for flight at Mach 7. Extensive risk reduction activities for the first flight are completed, and non-recurring design activities for the Mach 10 X-43 (third flight) are nearing completion. The Mach 7 flight of the X-43, in the spring of 2001, will be the first flight of an airframe-integrated scramjet-powered vehicle. The Hyper-X program is continuing to plan follow-on activities to focus an orderly continuation of hypersonic technology development through flight research

    The Relativistic Electron-Proton Telescope (REPT) instrument on board the Radiation Belt Storm Probes (RBSP) spacecraft: Characterization of Earth’s radiation belt high-energy particle populations

    No full text
    Particle acceleration and loss in the million electron Volt (MeV) energy range (and above) is the least understood aspect of radiation belt science. In order to measure cleanly and separately both the energetic electron and energetic proton components, there is a need for a carefully designed detector system. The Relativistic Electron-Proton Telescope (REPT) on board the Radiation Belt Storm Probe (RBSP) pair of spacecraft consists of a stack of high-performance silicon solid-state detectors in a telescope configuration, a collimation aperture, and a thick case surrounding the detector stack to shield the sensors from penetrating radiation and bremsstrahlung. The instrument points perpendicular to the spin axis of the spacecraft and measures high-energy electrons (up to ∼20 MeV) with excellent sensitivity and also measures magnetospheric and solar protons to energies well above E=100 MeV. The instrument has a large geometric factor (g=0.2 cm2 sr) to get reasonable count rates (above background) at the higher energies and yet will not saturate at the lower energy ranges. There must be fast enough electronics to avert undue dead-time limitations and chance coincidence effects. The key goal for the REPT design is to measure the directional electron intensities (in the range 10−2–106 particles/cm2 s sr MeV) and energy spectra (ΔE/E∼25 %) throughout the slot and outer radiation belt region. Present simulations and detailed laboratory calibrations show that an excellent design has been attained for the RBSP needs. We describe the engineering design, operational approaches, science objectives, and planned data products for REPT

    Environmental Adaptations:Encystment and Cyclomorphosis

    No full text
    Stressful environmental conditions generally limit animal survival, growth, and reproduction and may induce dormancy in the form of various resting stages. Tardigrades represent one of a few animal phyla in which different forms of dormancy are frequently encountered. One of these forms, cryptobiosis, a quick response to sudden changes in the environment, has gained a great deal of attention, whereas much less is known of the slower emerging form of dormancy, diapause. In this review we present the current knowledge of diapause in tardigrades. Diapause in tardigrades, represented by encystement and cyclomorphosis, is likely controlled by exogenous stimuli, such as temperature and oxygen tension, and perhaps also by endogenous stimuli. These stimuli initiate and direct successive phases of deep morphological transformations within the individual. Encystment is characterized by tardigrades that lie dormant\u2014in diapause\u2014within retained cuticular coats (exuvia). The ability to form cysts is likely widespread but presently only confirmed for a limited number of species. In tardigrades, cyclomorphosis was first reported as a characteristic of the marine eutardigrade genus Halobiotus. This phenomenon is characterized by pronounced seasonal morphological changes and in Halobiotus involves stages with an extra protecting cuticle. Cyst formation in moss-dwelling limnic species may also occur as part of a seasonal cyclic event and can thus be viewed as part of a cyclomorphosis. Therefore, whereas diapause generally seems to be an optional response to environmental changes, it may also be an obligate part of the life cycle. The evolution of encystment and cyclomorphosis finds its starting point in the molting process. Both phenomena represent an adaptation to environmental constraints. Notably, the evolution of diapause is not necessarily an alternative to cryptobiosis, and some tardigrades may enter both forms of dormancy. The simultaneous occurrence of several adaptive strategies within tardigrades has largely increased the resistance of these enigmatic animals toward extreme environmental stress

    A REVIEW OF THE MICROBIOLOGY OF COMMERCIAL SUGAR AND RELATED SWEETENING AGENTS

    No full text
    corecore