28,021 research outputs found

    Statistical Properties of Many Particle Eigenfunctions

    Full text link
    Wavefunction correlations and density matrices for few or many particles are derived from the properties of semiclassical energy Green functions. Universal features of fixed energy (microcanonical) random wavefunction correlation functions appear which reflect the emergence of the canonical ensemble as the number of particles approaches infinity. This arises through a little known asymptotic limit of Bessel functions. Constraints due to symmetries, boundaries, and collisions between particles can be included.Comment: 13 pages, 4 figure

    Robust point correspondence applied to two and three-dimensional image registration

    Get PDF
    Accurate and robust correspondence calculations are very important in many medical and biological applications. Often, the correspondence calculation forms part of a rigid registration algorithm, but accurate correspondences are especially important for elastic registration algorithms and for quantifying changes over time. In this paper, a new correspondence calculation algorithm, CSM (correspondence by sensitivity to movement), is described. A robust corresponding point is calculated by determining the sensitivity of a correspondence to movement of the point being matched. If the correspondence is reliable, a perturbation in the position of this point should not result in a large movement of the correspondence. A measure of reliability is also calculated. This correspondence calculation method is independent of the registration transformation and has been incorporated into both a 2D elastic registration algorithm for warping serial sections and a 3D rigid registration algorithm for registering pre and postoperative facial range scans. These applications use different methods for calculating the registration transformation and accurate rigid and elastic alignment of images has been achieved with the CSM method. It is expected that this method will be applicable to many different applications and that good results would be achieved if it were to be inserted into other methods for calculating a registration transformation from correspondence

    Thermalization of a Brownian particle via coupling to low-dimensional chaos

    Full text link
    It is shown that a paradigm of classical statistical mechanics --- the thermalization of a Brownian particle --- has a low-dimensional, deterministic analogue: when a heavy, slow system is coupled to fast deterministic chaos, the resultant forces drive the slow degrees of freedom toward a state of statistical equilibrium with the fast degrees. This illustrates how concepts useful in statistical mechanics may apply in situations where low-dimensional chaos exists.Comment: Revtex, 11 pages, no figures

    Development of the activated diffusion brazing process for fabrication of finned shell to strut turbine blades

    Get PDF
    The activated diffusion brazing process was developed for attaching TD-NiCr and U700 finned airfoil shells to matching Rene 80 struts obstructing the finned cooling passageways. Creep forming the finned shells to struts in combination with precise preplacement of brazing alloy resulted in consistently sound joints, free of cooling passageway clogging. Extensive tensile and stress rupture testing of several joint orientation at several temperatures provided a critical assessment of joint integrity of both material combinations. Trial blades of each material combination were fabricated followed by destructive metallographic examination which verified high joint integrity

    Reflectionless Potentials and PT Symmetry

    Full text link
    Large families of Hamiltonians that are non-Hermitian in the conventional sense have been found to have all eigenvalues real, a fact attributed to an unbroken PT symmetry. The corresponding quantum theories possess an unconventional scalar product. The eigenvalues are determined by differential equations with boundary conditions imposed in wedges in the complex plane. For a special class of such systems, it is possible to impose the PT-symmetric boundary conditions on the real axis, which lies on the edges of the wedges. The PT-symmetric spectrum can then be obtained by imposing the more transparent requirement that the potential be reflectionless.Comment: 4 Page

    Differential Tissue Response to Growth Hormone in Mice

    Get PDF
    Growth hormone (GH) has been shown to act directly on multiple tissues throughout the body. Historically, it was believed that GH acted directly in the liver and only indirectly in other tissues via insulin‐like growth hormone 1 (IGF‐1). Despite extensive work to describe GH action in individual tissues, a comparative analysis of acute GH signaling in key metabolic tissues has not been performed. Herein, we address this knowledge gap. Acute tissue response to human recombinant GH was assessed in mice by measuring signaling via phospho‐STAT5 immunoblotting. STAT5 activation is an easily and reliably detected early marker of GH receptor engagement. We found differential tissue sensitivities; liver and kidney were equally GH‐sensitive and more sensitive than white adipose tissue, heart, and muscle (gastrocnemius). Gastrocnemius had the greatest maximal response compared to heart, liver, white adipose tissue, and whole kidney. Differences in maximum responsiveness were positively correlated with tissue STAT5 abundance, while differences in sensitivity were not explained by differences in GH receptor levels. Thus, GH sensitivity and responsiveness of distinct metabolic tissues differ and may impact physiology and disease

    Semi-classical calculations of the two-point correlation form factor for diffractive systems

    Full text link
    The computation of the two-point correlation form factor K(t) is performed for a rectangular billiard with a small size impurity inside for both periodic or Dirichlet boundary conditions. It is demonstrated that all terms of perturbation expansion of this form factor in powers of t can be computed directly by semiclassical trace formula. The main part of the calculation is the summation of non-diagonal terms in the cross product of classical orbits. When the diffraction coefficient is a constant our results coincide with expansion of exact expressions ontained by a different method.Comment: 42 pages, 10 figures, Late

    A simple and surprisingly accurate approach to the chemical bond obtained from dimensional scaling

    Get PDF
    We present a new dimensional scaling transformation of the Schrodinger equation for the two electron bond. This yields, for the first time, a good description of the two electron bond via D-scaling. There also emerges, in the large-D limit, an intuitively appealing semiclassical picture, akin to a molecular model proposed by Niels Bohr in 1913. In this limit, the electrons are confined to specific orbits in the scaled space, yet the uncertainty principle is maintained because the scaling leaves invariant the position-momentum commutator. A first-order perturbation correction, proportional to 1/D, substantially improves the agreement with the exact ground state potential energy curve. The present treatment is very simple mathematically, yet provides a strikingly accurate description of the potential energy curves for the lowest singlet, triplet and excited states of H_2. We find the modified D-scaling method also gives good results for other molecules. It can be combined advantageously with Hartree-Fock and other conventional methods.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Letter

    Different Facets of Chaos in Quantum Mechanics

    Full text link
    Nowadays there is no universally accepted definition of quantum chaos. In this paper we review and critically discuss different approaches to the subject, such as Quantum Chaology and the Random Matrix Theory. Then we analyze the problem of dynamical chaos and the time scales associated with chaos suppression in quantum mechanics. Summary: 1. Introduction 2. Quantum Chaology and Spectral Statistics 3. From Poisson to GOE Transition: Comparison with Experimental Data 3.1 Atomic Nuclei 3.2 The Hydrogen Atom in the Strong Magnetic Field 4. Quantum Chaos and Field Theory 5. Alternative Approaches to Quantum Chaos 6. Dynamical Quantum Chaos and Time Scales 6.1 Mean-Field Approximation and Dynamical Chaos 7. ConclusionsComment: RevTex, 25 pages, 7 postscript figures, to be published in Int. J. Mod. Phys.
    corecore