534 research outputs found

    Biodiversity in a forest island: reptiles and amphibians of the West African Togo Hills

    Get PDF
    Our recent surveys of the herpetological diversity of the West African Togo Hills documented a total of 65 reptile and amphibian species, making Kyabobo National Park one of the most diverse sites surveyed in Ghana. We provide accounts for all species recorded along with photographs to aid in identification. We recorded 26 amphibians, including six new records for Kyabobo N. P., one of which is a record for the Togo Hills. Our collection of reptile species (22 lizards, 16 snakes, and one crocodile) also provides new records and range extensions for Kyabobo N. P., such as the first observation of the dwarf crocodile, Osteolaemus tetraspis. Amphibian species still lacking from our surveys in the Togo Hills include several species that are adapted to fast running water or large closed forests, like the Togo toad, Bufo togoensis and the slippery frog, Conraua derooi. Appropriate habitat for such species still remains in Kyabobo, highlighting the need for additional survey work. We draw attention to the importance of conserving forest stream habitats, which will in turn help ensure the persistence of forest-restricted species. We also highlight those species that may prove most useful for evolutionary studies of West African rain forest biogeography

    CYP35: Xenobiotically induced gene expression in the nematode Caenorhabditis elegans

    Get PDF
    Although over 80 cytochrome P450 (CYP) encoding genes have been identified in the genome of the nematode Caenorhabditis elegans very little is known about their involvement in biotransformation. This paper demonstrates a concentration-dependent relationship of C. elegans CYP35A1, A2, A5, and C1 gene expression in response to four organic xenobiotics, namely atrazine, PCB52, fluoranthene, and lansoprazole. The toxicity of these xenobiotics was determined using a reproduction assay. CYP-specific messenger RNA expression was analyzed by semi-quantitative RT-PCR resulting in a strongly increasing, concentration-dependent induction well below the EC50 for reproduction. For PCB52, approximately 0.5% of the EC50 induces a 2-fold increase of CYP35 gene expression. Using a double mutant and multiple RNAi of CYP35A/C it was possible to diminish the reproduction decline caused by PCB52 and fluoranthene.Peer Reviewe

    Structural origins of relaxor behavior in a 0.96(Bi1/2Na1/2)TiO3-0.04BaTiO(3) single crystal under electric field

    Get PDF
    Diffuse x-ray scattering intensities from a single crystal of 0.96(Bi1/2Na1/2TiO3)-0.04(BaTiO3) have been collected at room temperature with and without application of an electric field along the [100] direction. Distinct features in the diffuse scattering intensities indicate correlations on a nanometer length scale. It is shown that locally correlated planar-like structures and octahedral tilt-domains within the room temperature rhombohedral R3c phase are both electrically active and are irreversibly affected by application of an electric field of 4.3 kV/mm. The field dependence of these nanoscale structures is correlated with the relaxor behavior of the material by macroscopic permittivity measurementsopen221

    Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: Case study in a 93%(Bi0.5Na0.5)TiO3-7% BaTiO3 piezoelectric ceramic

    Get PDF
    The electric-field-induced strain in 93%(Bi0.5Na0.5)TiO3-7%BaTiO3 polycrystalline ceramic is shown to be the result of an electric-field-induced phase transformation from a pseudocubic to tetragonal symmetry. High-energy x-ray diffraction is used to illustrate the microstructural nature of the transformation. A combination of induced unit cell volumetric changes, domain texture, and anisotropic lattice strains are responsible for the observed macroscopic strain. This strain mechanism is not analogous to the high electric-field-induced strains observed in lead-based morphotropic phase boundary systems. Thus, systems which appear cubic under zero field should not be excluded from the search for lead-free piezoelectric compositions.open1127

    The impact of nitrogen mobility on the activity of zirconium oxynitride catalysts for ammonia decomposition

    Get PDF
    A zirconium oxynitride catalyst was used for the decomposition of ammonia to hydrogen and nitrogen. The onset of catalytic activity at 550 °C coincided with the onset of nitrogen ion mobility in the material and a phase change from the initial ÎČâ€Č phase ( Zr7O11N2) to the nitrogen-rich ÎČ″ ZrON phase ( Zr7O9,5N3). No hydrazine formation during an extended time on stream was detectable. Moreover, the onset of activity was also correlated to a rapid change in the electronic structure of the surface accompanying formation of the more active ÎČ″ ZrON phase. The results presented here show for the first time a direct correlation among the onset of ion conductivity as a bulk property, a modified electronic structure of the surface, and the catalytic performance of a heterogeneous catalyst
    • 

    corecore