406 research outputs found

    Ontogenetic Expression of Sonic Hedgehog in the Chicken Subpallium

    Get PDF
    Sonic hedgehog (SHH) is a secreted signaling factor that is implicated in the molecular patterning of the central nervous system (CNS), somites, and limbs in vertebrates. SHH has a crucial role in the generation of ventral cell types along the entire rostrocaudal axis of the neural tube. It is secreted early in development by the axial mesoderm (prechordal plate and notochord) and the overlying ventral neural tube. Recent studies clarified the impact of SHH signaling mechanisms on dorsoventral patterning of the spinal cord, but the corresponding phenomena in the rostral forebrain are slightly different and more complex. This notably involves separate Shh expression in the preoptic part of the forebrain alar plate, as well as in the hypothalamic floor and basal plates. The present work includes a detailed spatiotemporal description of the singular alar Shh expression pattern in the rostral preoptic forebrain of chick embryos, comparing it with FoxG1, Dlx5, Nkx2.1, and Nkx2.2 mRNA expression at diverse stages of development. As a result of this mapping, we report a subdivision of the preoptic region in dorsal and ventral zones; only the dorsal part shows Shh expression. The positive area impinges as well upon a median septocommissural preoptic domain. Our study strongly suggests tangential migration of Shh-positive cells from the preoptic region into other subpallial domains, particularly into the pallidal mantle and the intermediate septum

    Red nucleus and rubrospinal tract disorganization in the absence of Pou4f1

    Get PDF
    The red nucleus (RN) is a neuronal population that plays an important role in forelimb motor control and locomotion. Histologically it is subdivided into two subpopulations, the parvocellular RN (pRN) located in the diencephalon and the magnocellular RN (mRN) in the mesencephalon. The RN integrates signals from motor cortex and cerebellum and projects to spinal cord interneurons and motor neurons through the rubrospinal tract (RST). Pou4f1 is a transcription factor highly expressed in this nucleus that has been related to its specification. Here we profoundly analyzed consequences of Pou4f1 loss-of-function in development, maturation and axonal projection of the RN. Surprisingly, RN neurons are specified and maintained in the mutant, no cell death was detected. Nevertheless, the nucleus appeared disorganized with a strong delay in radial migration and with a wider neuronal distribution; the neurons did not form a compacted population as they do in controls, Robo1 and Slit2 were miss-expressed. Cplx1 and Npas1, expressed in the RN, are transcription factors involved in neurotransmitter release, neuronal maturation and motor function processes among others. In our mutant mice, both transcription factors are lost, suggesting an abnormal maturation of the RN. The resulting altered nucleus occupied a wider territory. Finally, we examined RST development and found that the RN neurons were able to project to the spinal cord but their axons appeared defasciculated. These data suggest that Pou4f1 is necessary for the maturation of RN neurons but not for their specification and maintenance.Peer reviewedPeer Reviewe

    Un nuevo concepto de la gastronomía desde la bioeconomía y la actividad académica

    Get PDF
    El proyecto “Ciencia y arte en gastronomía: botánica gastronómica y gastronomía molecular” se está desarrollando con el objetivo de establecer y organizar el intercambio de conocimientos y negocio en este ámbito. Con este objetivo se pretende aunar el conocimiento científico con la salud y el bienestar social desde la perspectiva bioeconómica promoviendo la creación de riqueza y trabajo. El proyecto forma parte de los cursos especializados que la Universidad Complutense de Madrid oferta con el animo de incrementar el conocimiento y desarrollar competencias personales y profesionales. El programa responde a la demanda social proporcionando una formación con inmediata proyección profesional mediante el establecimiento de un nexo directo entre la actividad académica y la realidad social.Universidad de Sevilla. Cristalografía, Mineralogía y Química Agrícola The project "Science and art in gastronomy: gastronomic botany and molecular gastronomy" is being developed with the aim to establish and organize the exchange of knowledge and business in this area. In this way we are working to join the scientific knowledge to the health and the social well-being, without losing the current perspective from the bioeconomy which look forward the generation of wealth and work. The project belongs to specialized courses offered by The Complutense University of Madrid which aim is to update the knowledge and develop personal and professional competitions. These programs answer to a social demand on providing formation with professional immediate projection establishing a direct relation between the academic activity and the social reality

    Tissue Clearing and Deep Imaging of the Kidney Using Confocal and Two-Photon Microscopy

    Get PDF
    Microscopic and macroscopic evaluation of biological tissues in three dimensions is becoming increasingly popular. This trend is coincident with the emergence of numerous tissue clearing strategies, and advancements in confocal and two-photon microscopy, enabling the study of intact organs and systems down to cellular and sub-cellular resolution. In this chapter, we describe a wholemount immunofluorescence technique for labeling structures in renal tissue. This technique combined with solvent-based tissue clearing and confocal imaging, with or without two-photon excitation, provides greater structural information than traditional sectioning and staining alone. Given the addition of paraffin embedding to our method, this hybrid protocol offers a powerful approach to combine confocal or two-photon findings with histological and further immunofluorescent analysis within the same tissue

    Diel vertical migrants and the ocean carbon pump: is there a ladder of migration?

    Get PDF
    Active flux performed by migrant biota is still a gap in the knowledge of the biological pump in the ocean. These organisms mainly feed upon epipelagic zooplankton and transport this carbon due to their feeding at the shallower layers and their defecation, respiration, excretion and mortality at depth. The recent finding that mesopelagic fish biomass in the ocean is one order of magnitude higher indicates that the active flux should be thoroughly evaluated. Here, we show enhanced plankton biomass, ranging from bacteria to zooplankton, reaching down to 4,000 m depth below the Atlantic and Pacific equatorial upwelling systems. We also found a striking close relationship between the zooplankton backscatter enhancement in the epi-, meso- and bathypelagic zones. Backscatter increased in a similar proportion along the subtropical, tropical, and equatorial areas in the three zones. Literature, recent data in subtropical waters, and these results suggest an intense active carbon transport from the epipelagic layer to the deep sea driven by zooplankton and micronekton, enhancing the efficiency of the biological pump and promoting true carbon sequestration beyond 1000 m depth.MALASPINA (CSD2008 00077) MAFIA (CTM2012-39587-C04

    Abundance and Structure of the Zooplankton Community During a Post-eruptive Process: The Case of the Submarine Volcano Tagoro (El Hierro; Canary Islands), 2013-2018

    Get PDF
    The mesozooplankton community was analyzed over a 6-year period (2013-2018) during the post-eruptive stage of the submarine volcano Tagoro, located south of the island of El Hierro (Canary Archipelago, Spain). Nine cruises from March 2013 to March 2018 were carried out in two different seasons, spring (March-April) and autumn (October). A high-resolution study was carried out across the main cones of Tagoro volcano, as well as a large number of reference stations surrounding El Hierro (unaffected by the volcano). The zooplankton community at the reference stations showed a high similarity with more than 85% of the variation in abundance and composition attributable to seasonal differences. Moreover, our data showed an increase in zooplankton abundance in waters affected by the volcano with a higher presence of non-calanoid copepods and a decline in the diversity of the copepod community, indicating that volcanic inputs have a significant effect on these organisms. Fourteen different zooplankton groups were found but copepods were dominant (79%) with 59 genera and 170 species identified. Despite the high species number, less than 30 presented a larger abundance than 1%. Oncaea and Clausocalanus were the most abundant genera followed by Oithona and Paracalanus (60%). Nine species dominated (>2%): O. media, O. plumifera, and O. setigera among the non-calanoids and M. clausi, P. nanus, P. parvus, C. furcatus, C. arcuicornis, and N. minor among the calanoids. After the initial low abundance of the copepods as a consequence of the eruption, an increase was observed in the last years of the study, where besides the small Paracalanus and Clausocalanus, the Cyclopoids seem to have a good adaptive strategy to the new water conditions. The increase in zooplankton abundance and the decline in the copepod diversity in the area affected by the volcano indicate that important changes in the composition of the zooplankton community have occurred. The effect of the volcanic emissions on the different copepods was more evident in spring when the water was cooler and the mixing layer was deeper. Further and longer research is recommended to monitor the zooplankton community in the natural laboratory of the Tagoro submarine volcano.En prens

    Searching ChIP-seq genomic islands for combinatorial regulatory codes in mouse embryonic stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To facilitate deciphering underlying transcriptional regulatory circuits in mouse embryonic stem (ES) cells, recent ChIP-seq data provided genome-wide binding locations of several key transcription factors (TFs); meanwhile, existing efforts profiled gene expression in ES cells and in their early differentiated state. It has been shown that the gene expression profiles are correlated with the binding of these TFs. However, it remains unclear whether other TFs, referred to as cofactors, participate the gene regulation by collaborating with the ChIP-seq TFs.</p> <p>Results</p> <p>Based on our analyses of the ES gene expression profiles and binding sites of potential cofactors in vicinity of the ChIP-seq TF binding locations, we identified a list of co-binding features that show significantly different characteristics between different gene expression patterns (activated or repressed gene expression in ES cells) at a false discovery rate of 10%. Gene classification with a subset of the identified features achieved up to 20% improvement over classification only based on the ChIP-seq TFs. More than 1/3 of reasoned regulatory roles of cofactor candidates involved in these features are supported by existing literatures. Finally, the predicted target genes of the majority candidates present expected expression change in another independent data set, which serves as a supplementary validation of these candidates.</p> <p>Conclusions</p> <p>Our results revealed a list of combinatorial genomic features that are significantly associated with gene expression in ES cells, suggesting potential cofactors of the ChIP-seq TFs for gene regulation.</p

    The caudo-ventral pallium is a novel pallial domain expressing Gdf10 and generating Ebf3-positive neurons of the medial amygdala

    Get PDF
    In rodents, the medial nucleus of the amygdala receives direct inputs from the accessory olfactory bulbs and is mainly implicated in pheromone-mediated reproductive and defensive behaviors. The principal neurons of the medial amygdala are GABAergic neurons generated principally in the caudo-ventral medial ganglionic eminence and preoptic area. Beside GABAergic neurons, the medial amygdala also contains glutamatergic Otp-expressing neurons cells generated in the lateral hypothalamic neuroepithelium and a non-well characterized Pax6-positive population. In the present work, we describe a novel glutamatergic Ebf3-expressing neuronal subpopulation distributed within the periphery of the postero-ventral medial amygdala. These neurons are generated in a pallial domain characterized by high expression of Gdf10. This territory is topologically the most caudal tier of the ventral pallium and accordingly, we named it Caudo-Ventral Pallium (CVP). In the absence of Pax6, the CVP is disrupted and Ebf3-expressing neurons fail to be generated. Overall, this work proposes a novel model of the neuronal composition of the medial amygdala and unravels for the first time a new novel pallial subpopulation originating from the CVP and expressing the transcription factor Ebf3.This work was supported by Grants of the French National Research Agency (Agence Nationale de la Recherche; ANR) [ANR-13-BSV4-0011] and by the French Government through the ‘Investments for the Future’ LABEX SIGNALIFE [ANR-11-LABX-0028-01] to M.S., by the Spanish Government (BFU2007-60263 and BFU2010-17305) to A.F, and by the Medical Research Council (MR/K013750/1) to T.T. N.R.-R. is funded by a postdoctoral fellowship from the Ville de Nice, France (“Aide Individuelle aux Jeunes Chercheurs 2016”).Peer reviewe
    corecore