64 research outputs found

    On Locality in Quantum General Relativity and Quantum Gravity

    Get PDF
    The physical concept of locality is first analyzed in the special relativistic quantum regime, and compared with that of microcausality and the local commutativity of quantum fields. Its extrapolation to quantum general relativity on quantum bundles over curved spacetime is then described. It is shown that the resulting formulation of quantum-geometric locality based on the concept of local quantum frame incorporating a fundamental length embodies the key geometric and topological aspects of this concept. Taken in conjunction with the strong equivalence principle and the path-integral formulation of quantum propagation, quantum-geometric locality leads in a natural manner to the formulation of quantum-geometric propagation in curved spacetime. Its extrapolation to geometric quantum gravity formulated over quantum spacetime is described and analyzed.Comment: Mac-Word file translated to postscript for submission. The author may be reached at: [email protected] To appear in Found. Phys. vol. 27, 199

    CPT-conserving Hamiltonians and their nonlinear supersymmetrization using differential charge-operators C

    Full text link
    A brief overview is given of recent developments and fresh ideas at the intersection of PT and/or CPT-symmetric quantum mechanics with supersymmetric quantum mechanics (SUSY QM). We study the consequences of the assumption that the "charge" operator C is represented in a differential-operator form. Besides the freedom allowed by the Hermiticity constraint for the operator CP, encouraging results are obtained in the second-order case. The integrability of intertwining relations proves to match the closure of nonlinear SUSY algebra. In an illustration, our CPT-symmetric SUSY QM leads to non-Hermitian polynomial oscillators with real spectrum which turn out to be PT-asymmetric.Comment: 25 page

    Complete Characterization of Pure Quantum Measurements and Quantum Channels

    Full text link
    We give a complete characterization for pure quantum measurements, i.e., for POVMs which are extremals in the convex set of all POVMs. Such measurements are free from classical noise. The characterization is valid both in discrete and continuous cases, and also in the case of an infinite Hilbert space. We show that sharp measurements are clean, i.e. they cannot be irreversibly connected to another POVMs via quantum channels and thus they are free from any additional quantum noise. We exhibit an example which demonstrates that this result could also be approximately true for pure measurements.Comment: 5 page

    The modern tools of quantum mechanics (A tutorial on quantum states, measurements, and operations)

    Full text link
    This tutorial is devoted to review the modern tools of quantum mechanics, which are suitable to describe states, measurements, and operations of realistic, not isolated, systems in interaction with their environment, and with any kind of measuring and processing devices. We underline the central role of the Born rule and and illustrate how the notion of density operator naturally emerges, together the concept of purification of a mixed state. In reexamining the postulates of standard quantum measurement theory, we investigate how they may formally generalized, going beyond the description in terms of selfadjoint operators and projective measurements, and how this leads to the introduction of generalized measurements, probability operator-valued measures (POVM) and detection operators. We then state and prove the Naimark theorem, which elucidates the connections between generalized and standard measurements and illustrates how a generalized measurement may be physically implemented. The "impossibility" of a joint measurement of two non commuting observables is revisited and its canonical implementations as a generalized measurement is described in some details. Finally, we address the basic properties, usually captured by the request of unitarity, that a map transforming quantum states into quantum states should satisfy to be physically admissible, and introduce the notion of complete positivity (CP). We then state and prove the Stinespring/Kraus-Choi-Sudarshan dilation theorem and elucidate the connections between the CP-maps description of quantum operations, together with their operator-sum representation, and the customary unitary description of quantum evolution. We also address transposition as an example of positive map which is not completely positive, and provide some examples of generalized measurements and quantum operations.Comment: Tutorial. 26 pages, 1 figure. Published in a special issue of EPJ - ST devoted to the memory of Federico Casagrand

    Propagation of a string across the cosmological singularity

    Full text link
    Our results concern the transition of a quantum string through the singularity of the compactified Milne (CM) space. We restrict our analysis to the string winding around the compact dimension (CD) of spacetime. The CD undergoes contraction to a point followed by re-expansion. We demonstrate that both classical and quantum dynamics of considered string are well defined. Most of presently available calculations strongly suggest that the singularity of a time dependent orbifold is useless as a model of the cosmological singularity. We believe that our results bring, to some extent, this claim into question.Comment: 9 pages, 2 figures, revtex4; version accepted for publication in Class. Quantum Gra

    On Hilbert-Schmidt operator formulation of noncommutative quantum mechanics

    Full text link
    This work gives value to the importance of Hilbert-Schmidt operators in the formulation of a noncommutative quantum theory. A system of charged particle in a constant magnetic field is investigated in this framework

    Quantum theory of successive projective measurements

    Full text link
    We show that a quantum state may be represented as the sum of a joint probability and a complex quantum modification term. The joint probability and the modification term can both be observed in successive projective measurements. The complex modification term is a measure of measurement disturbance. A selective phase rotation is needed to obtain the imaginary part. This leads to a complex quasiprobability, the Kirkwood distribution. We show that the Kirkwood distribution contains full information about the state if the two observables are maximal and complementary. The Kirkwood distribution gives a new picture of state reduction. In a nonselective measurement, the modification term vanishes. A selective measurement leads to a quantum state as a nonnegative conditional probability. We demonstrate the special significance of the Schwinger basis.Comment: 6 page

    Minimal Informationally Complete Measurements for Pure States

    Full text link
    We consider measurements, described by a positive-operator-valued measure (POVM), whose outcome probabilities determine an arbitrary pure state of a D-dimensional quantum system. We call such a measurement a pure-state informationally complete (PSI-complete) POVM. We show that a measurement with 2D-1 outcomes cannot be PSI-complete, and then we construct a POVM with 2D outcomes that suffices, thus showing that a minimal PSI-complete POVM has 2D outcomes. We also consider PSI-complete POVMs that have only rank-one POVM elements and construct an example with 3D-2 outcomes, which is a generalization of the tetrahedral measurement for a qubit. The question of the minimal number of elements in a rank-one PSI-complete POVM is left open.Comment: 2 figures, submitted for the Asher Peres festschrif

    Dirac quantization of membrane in time dependent orbifold

    Get PDF
    We present quantum theory of a membrane propagating in the vicinity of a time dependent orbifold singularity. The dynamics of a membrane, with the parameters space topology of a torus, winding uniformly around compact dimension of the embedding spacetime is mathematically equivalent to the dynamics of a closed string in a flat FRW spacetime. The construction of the physical Hilbert space of a membrane makes use of the kernel space of self-adjoint constraint operators. It is a subspace of the representation space of the constraints algebra. There exist non-trivial quantum states of a membrane evolving across the singularity.Comment: 16 pages, no figures, version accepted for publication in Journal of High Energy Physic

    Pauli problem for a spin of arbitrary length: A simple method to determine its wave function

    Get PDF
    The problem of determining a pure state vector from measurements is investigated for a quantum spin of arbitrary length. Generically, only a finite number of wave functions is compatible with the intensities of the spin components in two different spatial directions, measured by a Stern-Gerlach apparatus. The remaining ambiguity can be resolved by one additional well-defined measurement. This method combines efficiency with simplicity: only a small number of quantities have to be measured and the experimental setup is elementary. Other approaches to determine state vectors from measurements, also known as the ā€˜ā€˜Pauli problem,ā€™ā€™ are reviewed for both spin and particle systems
    • ā€¦
    corecore