75 research outputs found

    The first 8-13 micron spectra of globular cluster red giants: circumstellar silicate dust grains in 47 Tucanae (NGC 104)

    Full text link
    We present 8-13 micron spectra of eight red giants in the globular cluster 47 Tucanae (NGC 104), obtained at the European Southern Observatory 3.6m telescope. These are the first mid-infrared spectra of metal-poor, low-mass stars. The spectrum of at least one of these, namely the extremely red, large-amplitude variable V1, shows direct evidence of circumstellar grains made of amorphous silicate.Comment: Accepted for publication in Astronomy and Astrophysics, 5 page

    Faint Sources in the EUVE Survey: Identification of White Dwarfs, Active Late‐Type Stars, and Galactic Nuclei

    Get PDF
    We report the classification of 21 new extreme-ultraviolet sources from the recent catalog of Lampton et al. The optical spectra presented identify the objects as 14 active late-type stars (including two double active stars and a possible T Tauri star), three white dwarfs, and six active galactic nuclei (a Seyfert galaxy, the BL Lac object 1ES 1028+511 [=EUVE J1031+508], and four quasi-stellar objects). We have detected Ca II absorption lines in the BL Lac object and measured its redshift. Two of the white dwarfs are unusually massive (M \u3e 1.1 M☉). Our sample of late-type stars includes five previously known high proper motion objects (EUVE J1004+503, J2244-332A,B, J1802+642, and J1131-346), of which one is the well-known flare star TX PsA (EUVE J2244-332B). We report an unusually high level of activity for the primary component of the TX PsA system (EUVE J2244-332A), which may indicate flare activity. The group of late-type stars is on average almost 3 mag fainter (m ≈ 13) than the typical member of the Extreme Ultraviolet Explorer (EUVE) all-sky survey catalog. All Galactic and extragalactic objects were also detected in the ROSAT Position Sensitive Proportional Counter survey, and most are at the faint limit of the EUVE detectors. These new identifications substantially increase the total number of EUV-selected extragalactic sources

    The Neon Abundance in the Ejecta of QU Vul From Late-Epoch IR Spectra

    Full text link
    We present ground-based SpectroCam-10 mid-infrared, MMT optical, and Spitzer Space Telescope IRS mid-infrared spectra taken 7.62, 18.75, and 19.38 years respectively after the outburst of the old classical nova QU Vulpeculae (Nova Vul 1984 #2). The spectra of the ejecta are dominated by forbidden line emission from neon and oxygen. Our analysis shows that neon was, at the first and last epochs respectively, more than 76 and 168 times overabundant by number with respect to hydrogen compared to the solar value. These high lower limits to the neon abundance confirm that QU Vul involved a thermonuclear runaway on an ONeMg white dwarf and approach the yields predicted by models of the nucleosynthesis in such events.Comment: ApJ 2007 accepted, 18 pages, including 5 figures, 1 tabl

    Dust Morphology and Composition in FU Orionis Systems

    Get PDF
    FU Orionis stars are a small group of pre–main-sequence stars known for large-amplitude optical variability. These objects also exhibit multiwavelength phenomena suggestive of active accretion from a circumstellar disk. We present high spatial resolution mid-IR imaging and spectroscopy, submillimeter photometry, and 3–4 ÎŒm photometry of four FU Ori–class objects, RNO 1B and C, Z CMa, and Par 21, and one object classified as a pre–FU Ori star, V380 Ori. We resolve multiple IR sources and extended emission in the RNO 1B/C system, and we discuss in detail their association with disk activity and the source of the Infrared Astronomical Satellite far-IR and radio maser emission in this field. We derive dust temperatures and masses for all sources and discuss how dust composition and morphology is related to the evolutionary stage of these objects

    A Spitzer IRAC Census of the Asymptotic Giant Branch Populations in Local Group Dwarfs. II. IC 1613

    Full text link
    We present Spitzer Space Telescope IRAC photometry of the Local Group dwarf irregular galaxy IC 1613. We compare our 3.6, 4.5, 5.8, and 8.0 micron photometry with broadband optical photometry and find that the optical data do not detect 43% and misidentify an additional 11% of the total AGB population, likely because of extinction caused by circumstellar material. Further, we find that a narrowband optical carbon star study of IC 1613 detects 50% of the total AGB population and only considers 18% of this population in calculating the carbon to M-type AGB ratio. We derive an integrated mass-loss rate from the AGB stars of 0.2-1.0 x 10^(-3) solar masses per year and find that the distribution of bolometric luminosities and mass-loss rates are consistent with those for other nearby metal-poor galaxies. Both the optical completeness fractions and mass-loss rates in IC 1613 are very similar to those in the Local Group dwarf irregular, WLM, which is expected given their similar characteristics and evolutionary histories.Comment: Accepted by ApJ, 26 pages, 10 figures, version with high-resolution figures available at: http://webusers.astro.umn.edu/~djackson

    Five Years of Mid-Infrared Evolution of the Remnant of SN 1987A: The Encounter Between the Blast Wave and the Dusty Equatorial Ring

    Get PDF
    We have used the Spitzer satellite to monitor the mid-IR evolution of SN 1987A over a 5 year period spanning the epochs between days 6000 and 8000 since the explosion. The supernova (SN) has evolved into a supernova remnant (SNR) and its radiative output is dominated by the interaction of the SN blast wave with the pre-existing equatorial ring (ER). The mid-IR spectrum is dominated by emission from ~180 K silicate dust, collisionally-heated by the hot X-ray emitting gas with a temperature and density of ~5x10^6 K and 3x10^4 cm-3, respectively. The mass of the radiating dust is ~1.2x10^(-6) Msun on day 7554, and scales linearly with IR flux. The infrared to soft-X-ray flux ratio is roughly constant with a value of 2.5. Gas-grain collisions therefore dominate the cooling of the shocked gas. The constancy of of this ratio suggests that very little grain processing or gas cooling have occurred throughout this epoch. The shape of the dust spectrum remained unchanged during the observations while the total flux increased with a time dependence of t^(0.87), t being the time since the first encounter between the blast wave and the ER. These observations are consistent with the transitioning of the blast wave from free expansion to a Sedov phase as it propagates into the main body of the ER.Comment: Accepted for publication in the ApJ, 11 pages, 11 figure

    The M33 Variable Star Population Revealed by Spitzer

    Full text link
    We analyze five epochs of Spitzer Space Telescope/Infrared Array Camera (IRAC) observations of the nearby spiral galaxy M33. Each epoch covered nearly a square degree at 3.6, 4.5, and 8.0 microns. The point source catalog from the full dataset contains 37,650 stars. The stars have luminosities characteristic of the asymptotic giant branch and can be separated into oxygen-rich and carbon-rich populations by their [3.6] - [4.5] colors. The [3.6] - [8.0] colors indicate that over 80% of the stars detected at 8.0 microns have dust shells. Photometric comparison of epochs using conservative criteria yields a catalog of 2,923 variable stars. These variables are most likely long-period variables amidst an evolved stellar population. At least one-third of the identified carbon stars are variable.Comment: Accepted for publication in ApJ. See published article for full resolution figures and electronic table

    Spitzer Space Telescope Infrared Imaging and Spectroscopy of the Crab Nebula

    Get PDF
    We present 3.6, 4.5, 5.8, 8.0, 24, and 70 micron images of the Crab Nebula obtained with the Spitzer Space Telescope IRAC and MIPS cameras, Low- and High-resolution Spitzer IRS spectra of selected positions within the nebula, and a near-infrared ground-based image made in the light of [Fe II]1.644 micron. The 8.0 micron image, made with a bandpass that includes [Ar II]7.0 micron, resembles the general morphology of visible H-alpha and near-IR [Fe II] line emission, while the 3.6 and 4.5 micron images are dominated by continuum synchrotron emission. The 24 micron and 70 micron images show enhanced emission that may be due to line emission or the presence of a small amount of warm dust in the nebula on the order of less than 1% of a solar mass. The ratio of the 3.6 and 4.5 micron images reveals a spatial variation in the synchrotron power law index ranging from approximately 0.3 to 0.8 across the nebula. Combining this information with optical and X-ray synchrotron images, we derive a broadband spectrum that reflects the superposition of the flatter spectrum jet and torus with the steeper diffuse nebula, and suggestions of the expected pileup of relativistic electrons just before the exponential cutoff in the X-ray. The pulsar, and the associated equatorial toroid and polar jet structures seen in Chandra and HST images (Hester et al. 2002) can be identified in all of the IRAC images. We present the IR photometry of the pulsar. The forbidden lines identified in the high resolution IR spectra are all double due to Doppler shifts from the front and back of the expanding nebula and give an expansion velocity of approximately 1264 km/s.Comment: 21 pages, 4 tables, 16 figure

    Spitzer Far-Infrared Detections of Cold Circumstellar Disks

    Get PDF
    Observations at 70 microns with the Spitzer Space Telescope have detected several stellar systems within 65 pc of the Sun. Of 18 presumably young systems detected in this study, as many as 15 have 70-micron emission in excess of that expected from their stellar photospheres. Five of the systems with excesses are members of the Tucanae Association. The 70-micron excesses range from a factor of ~2 to nearly 30 times the expected photospheric emission from these stars. In contrast to the 70-micron properties of these systems, there is evidence for an emission excess at 24 microns for only HD 3003, confirming previous results for this star. The lack of a strong 24-micron excess in most of these systems suggests that the circumstellar dust producing the IR excesses is relatively cool (T_dust < 150 K) and that there is little IR-emitting material within the inner few AU of the primary stars. Many of these systems lie close enough to Earth that the distribution of the dust producing the IR excesses might be imaged in scattered light at optical and near-IR wavelengths.Comment: Accepted for publication in The Astrophysical Journal Letters; 5 pages, 2 tables, 2 figure

    A Spitzer Study of Comets 2P/Encke, 67P/Churyumov-Gerasimenko, and C/2001 HT50 (LINEAR-NEAT)

    Get PDF
    We present infrared images and spectra of comets 2P/Encke, 67P/Churyumov-Gerasimenko, and C/2001 HT50 (LINEAR-NEAT) as part of a larger program to observe comets inside of 5 AU from the sun with the Spitzer Space Telescope. The nucleus of comet 2P/Encke was observed at two vastly different phase angles (20 degrees and 63 degrees). Model fits to the spectral energy distributions of the nucleus suggest comet Encke's infrared beaming parameter derived from the near-Earth asteroid thermal model may have a phase angle dependence. The observed emission from comet Encke's dust coma is best-modeled using predominately amorphous carbon grains with a grain size distribution that peaks near 0.4 microns, and the silicate contribution by mass to the sub-micron dust coma is constrained to 31%. Comet 67P/Churyumov-Gerasimenko was observed with distinct coma emission in excess of a model nucleus at a heliocentric distance of 5.0 AU. The coma detection suggests that sublimation processes are still active or grains from recent activity remain near the nucleus. Comet C/2001 HT50 (LINEAR-NEAT) showed evidence for crystalline silicates in the spectrum obtained at 3.2 AU and we derive a silicate-to-carbon dust ratio of 0.6. The ratio is an order of magnitude lower than that derived for comets 9P/Tempel 1 during the Deep Impact encounter and C/1995 O1 (Hale-Bopp).Comment: Accepted for publication in the Astrophysical Journal 48 pages, 15 figures, 10 table
    • 

    corecore