814 research outputs found
Ballistic annihilation kinetics for a multi-velocity one-dimensional ideal gas
Ballistic annihilation kinetics for a multi-velocity one-dimensional ideal
gas is studied in the framework of an exact analytic approach. For an initial
symmetric three-velocity distribution, the problem can be solved exactly and it
is shown that different regimes exist depending on the initial fraction of
particles at rest. Extension to the case of a n-velocity distribution is
discussed.Comment: 19 pages, latex, uses Revtex macro
Search for universality in one-dimensional ballistic annihilation kinetics
We study the kinetics of ballistic annihilation for a one-dimensional ideal
gas with continuous velocity distribution. A dynamical scaling theory for the
long time behavior of the system is derived. Its validity is supported by
extensive numerical simulations for several velocity distributions. This leads
us to the conjecture that all the continuous velocity distributions \phi(v)
which are symmetric, regular and such that \phi(0) does not vanish, are
attracted in the long time regime towards the same Gaussian distribution and
thus belong to the same universality class. Moreover, it is found that the
particle density decays as n(t)~t^{-\alpha}, with \alpha=0.785 +/- 0.005.Comment: 8 pages, needs multicol, epsf and revtex. 8 postscript figures
included. Submitted to Phys. Rev. E. Also avaiable at
http://mykonos.unige.ch/~rey/publi.html#Secon
On the maximal Lp-Lq regularity of solutions to a general linear parabolic system
We show the existence of solution in the maximal regularity framework to a class of symmetric parabolic problems on a uniformly domain in . Our approach consist in showing - boundedness of families of solution operators to corresponding resolvent problems first in the whole space, then in half-space, perturbed half-space and finally, using localization arguments, on the domain. Assuming additionally boundedness of the domain we also show exponential decay of the solution. In particular, our approach does not require assuming a priori the uniform Lopatinskii - Shapiro condition
Are you reading what I am reading? The impact of contrasting alphabetic scripts on reading English
This study examines the impact of the crosslinguistic similarity of translation equivalents on word recognition by Russian-English bilinguals, who are fluent in languages with two different but partially overlapping writing systems. Current models for bilingual word recognition, like BIA+, hold that all words that are similar to the input letter string are activated and considered for selection, irrespective of the language to which they belong (Dijkstra and Van Heuven, 2002). These activation models are consistent with empirical data for bilinguals with totally different scripts, like Japanese and English (Miwa et al., 2014). Little is known about the bilingual processing of Russian and English, but studies indicate that the partially distinct character of the Russian and English scripts does not prevent co-activation (Jouravlev and Jared, 2014; Marian and Spivey, 2003; Kaushanskaya and Marian, 2007)
Kinetics of ballistic annihilation and branching
We consider a one-dimensional model consisting of an assembly of two-velocity
particles moving freely between collisions. When two particles meet, they
instantaneously annihilate each other and disappear from the system. Moreover
each moving particle can spontaneously generate an offspring having the same
velocity as its mother with probability 1-q. This model is solved analytically
in mean-field approximation and studied by numerical simulations. It is found
that for q=1/2 the system exhibits a dynamical phase transition. For q<1/2, the
slow dynamics of the system is governed by the coarsening of clusters of
particles having the same velocities, while for q>1/2 the system relaxes
rapidly towards its stationary state characterized by a distribution of small
cluster sizes.Comment: 10 pages, 11 figures, uses multicol, epic, eepic and eepicemu. Also
avaiable at http://mykonos.unige.ch/~rey/pubt.htm
Application of the Gillespie algorithm to a granular intruder particle
We show how the Gillespie algorithm, originally developed to describe coupled
chemical reactions, can be used to perform numerical simulations of a granular
intruder particle colliding with thermalized bath particles. The algorithm
generates a sequence of collision ``events'' separated by variable time
intervals. As input, it requires the position-dependent flux of bath particles
at each point on the surface of the intruder particle. We validate the method
by applying it to a one-dimensional system for which the exact solution of the
homogeneous Boltzmann equation is known and investigate the case where the bath
particle velocity distribution has algebraic tails. We also present an
application to a granular needle in bath of point particles where we
demonstrate the presence of correlations between the translational and
rotational degrees of freedom of the intruder particle. The relationship
between the Gillespie algorithm and the commonly used Direct Simulation Monte
Carlo (DSMC) method is also discussed.Comment: 13 pages, 8 figures, to be published in J. Phys. A Math. Ge
- …