1,267 research outputs found

    Electrons on a spherical surface: Physical properties and hollow spherical clusters

    Get PDF
    We discuss thephysical properties of a non interacting electron gas constrained to a spherical surface. In particular we consider its chemical potentials, its ionization potential,and its electric static polarizability. All these properties are discussed analytically as functions of the number N of electrons. The trends obtained with increasing N are compared with those of the corresponding properties experimentally measured or theoretically evaluated for quasi spherical hollow atomic and molecular clusters. Most of the properties investigated display similar trends, characterized by a prominence of shell effects. This leads to the de\ufb01nition of a scale-invariant distribution of magic numbers which follows a power law with critical exponent 120.5. We conclude that our completely mechanistic and analytically tractable model can be useful for the analysis of self-assembling complex systems

    Surface Hopping Dynamics with the Frenkel Exciton Model in a Semiempirical Framework

    Get PDF
    We present an implementation of the Frenkel exciton model in the framework of the semiempirical floating occupation molecular orbitals-configuration interaction (FOMO-CI) electronic structure method, aimed at simulating the dynamics of multichromophoric systems, in which excitation energy transfer can occur, by a very efficient approach. The nonadiabatic molecular dynamics is here dealt with by the surface hopping method, but the implementation we proposed is compatible with other dynamical approaches. The exciton coupling is computed either exactly, within the semiempirical approximation considered, or by resorting to transition atomic charges. The validation of our implementation is carried out on the trans-azobenzeno-2S-phane (2S-TTABP), formed by two azobenzene units held together by sulfur bridges, taken as a minimal model of multichromophoric systems, in which both strong and weak exciton couplings are present

    In vitro study: binding of 99mTc-DPD to synthetic amyloid fibrils

    Get PDF
    Abstract This paper is an report of the investigation of the in vitro binding of 99mTc-DPD for synthetic amyloid fibrils used for the diagnosis of cardiac amyloidosis (CA), as compared with the use of 99mTc-HMDP and 99mTc-PPI. It also includes an inquiry into the role played by Ca2+ ions and serum proteins on binding to amyloid like materials, as well as the saturability and specificity of DPD for fibrils versus amorphous precipitates (AP). In the work, synthetic insulin fibrils (SIF) and AP were characterized by Congo red staining and TEM imaging. An equal amount of three radiopharmaceuticals were then added to fibrils in Ca2+ (0-4.2 mmol/L) or human serum (HS) adjoined samples and radiopharmaceutical uptake was assessed. To test the saturability of amyloid binding sites, a displacement assays with cold DPD was performed, while adding 50-1500 nmol of 99mTc-DPD to SIF or AP, saturation binding tests were subsequently carried out for evaluating its specificity for amyloid. Herein, synthetic fibrils and AP showed conformational differences at TEM and polarized microscopy analysis. In our study, 99mTc-DPD fibrils uptake was seen to be the highest and increased with calcium ions concentration. What is more, serum proteins reduced the bound fraction to the amyloid deposits of about 15%, and the Kd values of 90 nM and 114 nM relative to SIF and AP, respectively, did not significantly differ. We saw that 99mTc-DPD is the best seeker for amyloid fibrils in cardiac amyloidosis, and that Ca2+ concentration positively influenced DPD fibrils binding. Furthermore, the radioactivity bound to the serum protein clear up the idea of nuclide exchanging dynamic balance between amyloid and circulating proteins. Moreover, non-labeled DPD did not exert a competition for 99mTc-DPD binding sites, and, finally, DPD cannot be defined a radiopharmaceutical specific for amyloid deposits

    Experimental and Numerical Performance Survey of a MW-Scale Supercritical CO2 Compressor Operating in Near-Critical Conditions

    Get PDF
    Closed power cycles based on carbon dioxide in supercritical conditions (sCO2 in the following) are experiencing a growing scientific, technical and industrial interest, due to the high energy conversion efficiency and components compactness. Despite these advantages, the use of a working fluid operating in proximity to the critical point, especially for the compressor, entails multidisciplinary challenges related to the severe non-ideality of the supercritical fluid, which includes the potential onset of phase change at the impeller intake. On the technical and industrial grounds, the phase-transition might dramatically affect the aerodynamics, the performance and the rangeability of the compressor. On the scientific ground, the modelling of two-phase flows in transonic/supersonic conditions still remains an open issue that demands a thorough experimental assessment. This work illustrates the results of a wide experimental campaign focused on the evaluation of the operative map of a MW-scale high-load sCO2 compressor operating in plant-representative conditions, i.e. in proximity to the critical point (P = 79.8 bar, T = 33°C), designed in the frame of the sCO2Flex project, EU Horizon 2020 funded program (grant agreement #764690). In the design process, the machine had been object of a thorough computational investigation, performed by using a homogeneous equilibrium model equipped with a barotropic equation of state, which revealed a significant impact of the phase change on the compressor aerodynamics and on its rangeability for flow rates higher than the design one. Such phenomena are connected to the sudden drop of the speed of sound, originated when the fluid thermodynamic condition crosses the saturation line, and they weaken as the compressor loading reduces. Experiments carried out on a first of a kind 5 MW sCO2 prototype compressor manufactured and tested by Baker Hughes in 2021 remarkably well matched the predicted compressor performance and, especially, the anticipated and sudden choking of the compressor at nominal peripheral Mach number. Results demonstrates experimentally, for the first time ever, the effects of the phase-change on the operation of a realistic sCO2 compressor, also providing significant insights on the predictive capabilities of the physical models employed for the calculation of two-phase flows in this class of machines

    Continuous two-step anaerobic digestion (TSAD) of organic market waste: rationalising process parameters

    Get PDF
    Experimental tests on continuous two-stage anaerobic digestion (TSAD) were conducted, to assess its energetic performance, using organic market waste as a substrate. The systems were tested to ascertain the effects of external stressors, which allow the separation into two different microorganism consortia, that is, hydrogen-producing bacteria and hydrogen-consuming bacteria, to be maintained. Two bioreactors were run in series under different operational conditions, including pH, mixing rate, and initial inoculum, and three different decreasing hydraulic retention times were considered, with a fixed ratio of 1:10 in volume between the first bioreactor (hydrogen) and the second one (methane). The performance of the whole system was assessed over > 140 days to monitor the stability of the process, in terms of the reduction of the volatile solids and the energy productivity for each step. Each tested condition was scored using two parameters: efficiency and efficacy. The first corresponds to the fraction of recovered energy of the available (η) and the second (ξ) was used to compare the energy produced by the TSAD with that of one-step anaerobic digestion. The efficiency resulted to be (24–32)%, while the efficacy proved to be around 1.20. The share of energy, under the form of hydrogen, compared to the total energy recovery, was in the (8–12) % range. Finally, the oscillation behaviour of the quasi-steady-state condition was analysed in terms of the Fano factor to establish the most stable conditions

    La terapia chirurgica della malattia diverticolare in fase acuta. Nostra esperienza

    Get PDF
    The treatment of the acute diverticolitis is still a stimulating and complex problem sustained by several anatomopatological and clinical factors and the possibility of different therapeutic options, being the operative mortality among 5% and 45%. With the modern technologies it is possible to follow the evolution of the illness so to perform more appropriate therapeutic plan. From 1997 to 2007 we have observed 278 patients with acute diverticolitis. In 219 (78,7%) patients the inflammatory and sub-occlusive condition has been faced with medical therapy, with resolution of the disease in 170 (61%) cases. In 49 (17,6%) patients we have gotten the resolution of the inflammatory disease, but not of the sub-occlusion and therefore we liked to submit them to surgical treatment in election. In 1 case we have found a colovesical fistula. A total of 59 (21,2%) patients with signs of acute abdomen have been submitted to surgery in urgency, within the 24 hours from the hospitalization. We have performed a primary resection with anastomosis and without stomia in all the patients, except in 3 cases in which we have done the Hartmann procedure for the cheap general conditions. We have not recorded intra and postoperative mortality and only in 3 cases we have had a leakage, that has not needed a surgical treatment. In 9 cases we observed infection of the wound, treated with antibiotic therapy. In our experience, performing a surgical procedure, without derivative stomia and manual anastomosis, it seems to be the fittest and less expensive procedure, also in situation of emergency-urgency, without increase of mortality and morbility

    Prospects of the use of nanofluids as working fluids for organic Rankine cycle power systems

    Get PDF
    The search of novel working fluids for organic Rankine cycle power systems is driven by the recent regulations imposing additional phase-out schedules for substances with adverse environmental characteristics. Recently, nanofluids (i.e. colloidal suspensions of nanoparticles in fluids) have been suggested as potential working fluids for organic Rankine cycle power systems due to their enhanced thermal properties, potentially giving advantages with respect to the design of the components and the cycle performance. Nevertheless, a number of challenges concerning the use of nanofluids must be investigated prior to their practical use. Among other things, the trade-off between enhanced heat transfer and increased pressure drop in heat exchangers, and the impact of the nanoparticles on the working fluid thermophysical properties, must be carefully analyzed. This paper is aimed at evaluating the prospects of using nanofluids as working fluids for organic Rankine cycle power systems. As a preliminary study, nanofluids consisting of a homogenous and stable mixture of different nanoparticles types and a selected organic fluid are simulated on a case study organic Rankine cycle unit for waste heat recovery. The impact of the nanoparticle type and concentration on the heat exchangers size, with respect to the reference case, is analyzed. The results indicate that the heat exchanger area requirements in the boiler decrease around 4 % for a nanoparticle volume concentration of 1 %, without significant differences among nanoparticle types. The pressure drop in the boiler increases up to 18 % for the same nanoparticle concentration, but this is not found to impact negatively the pump power consumption.</p

    On the trail of medieval wolves: ancient DNA, CT-based analyses and palaeopathology of a 1000-year-old wolf cranium from the Po Valley (northern Italy)

    Get PDF
    The Middle Ages represented a crucial period for the evolutionary history of wolves (Canis lupus), marked by both significant ecosystem changes, especially through the degradation of wooded landscapes and heavy persecution, that drove this species to a dramatic demographic decline. In Europe, informative and well-documented wolf remains from the Medieval Ages are exceptionally rare and are mostly represented by teeth and postcranial elements. In this study, we describe a well-preserved wolf cranium dated to ca. 967–1157 AD from the Po Valley (northern Italy). The specimen was analysed through a multidisciplinary approach including CT-based, ancient DNA, and palaeopathological analyses. Morphological and genetic data supported the assignment of this sample to Canis lupus species. CT-based analyses indicated a typical wolf-like morphology falling into the extant variability of the medium-sized subspecies C. lupus italicus, whereas palaeopathological analyses indicated a severe periodontitis. Phylogenetic analyses showed that the Po valley wolf had a unique and never described mtDNA control region haplotype, testifying variability in the ancient Italian wolf, which has now been lost. This study provides the first comprehensive description of a wolf from the Middle Ages, adding useful information for a deeper knowledge about population dynamics, variability, and diseases of this species
    • …
    corecore