146 research outputs found

    Reply to the Comment on the 'Hole-digging' in ensembles of tunneling molecular magnets

    Get PDF
    Reply to the Comment of J.J. Alonso and J.F. Fernandez on the paper "'Hole-digging' in ensembles of tunneling molecular magnets" of I.S. Tupitsyn, P.C.E. Stamp and N.V. Prokof'ev (Phys. Rev. B 69, 132406, (2004)).Comment: 1 LaTeX page, 1 PS figure; submitted to PR

    Effective Hamiltonian in the Problem of a "Central Spin" Coupled to a Spin Environment

    Full text link
    We consider here the problem of a "giant spin", with spin quantum number S>>1, interacting with a set of microscopic spins. Interactions between the microscopic spins are ignored. This model describes the low-energy properties of magnetic grains or magnetic macromolecules interacting with a surrounding spin environment, such as nuclear spins. We describe a general method for truncating the model to another one, valid at low energies, in which a two-level system interacts with the environmental spins, and higher energy terms are absorbed into a new set of couplings. This is done using an instanton technique. We then verify the accuracy of this technique, by comparing the results for the low energy effective Hamiltonian, with results derived for the original giant spin, coupled to a microscopic spin, using exact diagonalisation techniques.Comment: 15 pages, Latex, with 9 ps figure

    Continuous-Time Quantum Monte Carlo Algorithm for the Lattice Polaron

    Full text link
    An efficient continuous-time path-integral Quantum Monte Carlo algorithm for the lattice polaron is presented. It is based on Feynman's integration of phonons and subsequent simulation of the resulting single-particle self-interacting system. The method is free from the finite-size and finite-time-step errors and works in any dimensionality and for any range of electron-phonon interaction. The ground-state energy and effective mass of the polaron are calculated for several models. The polaron spectrum can be measured directly by Monte Carlo, which is of general interest.Comment: 5 pages, 4 figures, published versio

    Low-Temperature Quantum Relaxation in a System of Magnetic Nanomolecules

    Full text link
    We argue that to explain recent resonant tunneling experiments on crystals of Mn12_{12} and Fe8_8, particularly in the low-T limit, one must invoke dynamic nuclear spin and dipolar interactions. We show the low-TT, short-time relaxation will then have a t/τ\sqrt{t/\tau} form, where τ\tau depends on the nuclear T2T_2, on the tunneling matrix element Δ10\Delta_{10} between the two lowest levels, and on the initial distribution of internal fields in the sample, which depends very strongly on sample shape. The results are directly applicable to the Fe8Fe_8 system. We also give some results for the long-time relaxation.Comment: 4 pages, 3 PostScript figures, LaTe

    Band structure of the Jahn-Teller polaron from Quantum Monte Carlo

    Full text link
    A path-integral representation is constructed for the Jahn-Teller polaron (JTP). It leads to a perturbation series that can be summed exactly by the diagrammatic Quantum Monte Carlo technique. The ground-state energy, effective mass, spectrum and density of states of the three-dimensional JTP are calculated with no systematic errors. The band structure of JTP interacting with dispersionless phonons, is found to be similar to that of the Holstein polaron. The mass of JTP increases exponentially with the coupling constant. At small phonon frequencies, the spectrum of JTP is flat at large momenta, which leads to a strongly distorted density of states with a massive peak at the top of the band.Comment: 5 pages of REVTeX, 3 figure

    Diagrammatic Monte Carlo for Correlated Fermions

    Get PDF
    We show that Monte Carlo sampling of the Feynman diagrammatic series (DiagMC) can be used for tackling hard fermionic quantum many-body problems in the thermodynamic limit by presenting accurate results for the repulsive Hubbard model in the correlated Fermi liquid regime. Sampling Feynman's diagrammatic series for the single-particle self-energy we can study moderate values of the on-site repulsion (U/t∼4U/t \sim 4) and temperatures down to T/t=1/40T/t=1/40. We compare our results with high temperature series expansion and with single-site and cluster dynamical mean-field theory.Comment: 4 pages, 5 figures, stylistic change

    Topological multicritical point in the Toric Code and 3D gauge Higgs Models

    Get PDF
    We report a new type of multicritical point that arises from competition between the Higgs and confinement transitions in a Z_2 gauge system. The phase diagram of the 3d gauge Higgs model has been obtained by Monte-Carlo simulation on large (up to 60^3) lattices. We find the transition lines continue as 2nd-order until merging into a 1st-order line. These findings pose the question of an effective field theory for a multicritical point involving noncommuting order parameters. A similar phase diagram is predicted for the 2-dimensional quantum toric code model with two external fields, h_z and h_x; this problem can be mapped onto an anisotropic 3D gauge Higgs model.Comment: 4 pages, 3 figure
    • …
    corecore