17,555 research outputs found
Large Magnetic Fields and Motions of OH Masers in W75 N
We report on a second epoch of VLBA observations of the 1665 and 1667 MHz OH
masers in the massive star-forming region W75 N. We find evidence to confirm
the existence of very strong (~40 mG) magnetic fields near source VLA 2. The
masers near VLA 2 are dynamically distinct and include a very bright spot
apparently moving at 50 km/s relative to those around VLA 1. This fast-moving
spot may be an example of a rare class of OH masers seen in outflows in
star-forming regions. Due to the variability of these masers and the rapidity
of their motions, tracking these motions will require multiple observations
over a significantly shorter time baseline than obtained here. Proper motions
of the masers near VLA 1 are more suggestive of streaming along magnetized
shocks rather than Keplerian rotation in a disk. The motions of the easternmost
cluster of masers in W75 N (B) may be tracing slow expansion around an unseen
exciting source.Comment: 7 pages including 4 figures (2 color) & 3 tables, to appear in Ap
Critical Casimir interaction of ellipsoidal colloids with a planar wall
Based on renormalization group concepts and explicit mean field calculations
we study the universal contribution to the effective force and torque acting on
an ellipsoidal colloidal particle which is dissolved in a critical fluid and is
close to a homogeneous planar substrate. At the same closest distance between
the substrate and the surface of the particle, the ellipsoidal particle prefers
an orientation parallel to the substrate and the magnitude of the fluctuation
induced force is larger than if the orientation of the particle is
perpendicular to the substrate. The sign of the critical torque acting on the
ellipsoidal particle depends on the type of boundary conditions for the order
parameter at the particle and substrate surfaces, and on the pivot with respect
to which the particle rotates
The Star Clusters in the Starburst Irregular Galaxy NGC 1569
We examine star clusters in the irregular, starburst galaxy NGC 1569 from HST
images. In addition to the two known super star clusters, we identify 45 other
clusters that are compact but resolved. Integrated UVI colors of the clusters
span a large range, and suggest that ages range from 3 Myrs to 1 Gyr. However,
most of the clusters were formed at the tail end of the recent starburst.
Numerous clusters in addition to the know super star clusters are similar in
luminosity to a small globular cluster. We examined the radial surface
brightness of four of the clusters. Their half-light radii and core radii are
in the range observed in present-day globular clusters. Therefore, conditions
that produced the recent starburst have also been those necessary for producing
compact, bright star clusters.
We examine resolved stars in the outer parts of the two super star clusters.
Cluster A is dominated by bright blue stars with a small population of red
supergiants. Sub-components A1 and A2 have similar colors and a two-dimensional
color map does not offer evidence that one component is dominated by red
supergiants and the other not. The contradiction of the presence of red super-
giants with Wolf-Rayet stars may instead not be a contradiction at all since
there coexistence in a coeval population is not inconsistent with the evolution
of massive stars. Cluster B is dominated by red supergiants, and this is
confirmed by the presence of the stellar CO absorption feature in an integrated
spectrum. The various age indicators are consistent with a picture in which
cluster B is of order 10--20 Myrs old, and cluster A is >4-5 Myrs old.Comment: To be published in AJ, November 200
Curvature and Acoustic Instabilities in Rotating Fluid Disks
The stability of a rotating fluid disk to the formation of spiral arms is
studied in the tightwinding approximation in the linear regime. The dispersion
relation for spirals that was derived by Bertin et al. is shown to contain a
new, acoustic instability beyond the Lindblad resonances that depends only on
pressure and rotation. In this regime, pressure and gravity exchange roles as
drivers and inhibitors of spiral wave structures. Other instabilities that are
enhanced by pressure are also found in the general dispersion relation by
including higher order terms in the small parameter 1/kr for wavenumber k and
radius r. These instabilities are present even for large values of Toomre's
parameter Q. Unstable growth rates are determined in four cases: a
self-gravitating disk with a flat rotation curve, a self-gravitating disk with
solid body rotation, a non-self-gravitating disk with solid body rotation, and
a non-self-gravitating disk with Keplerian rotation. The most important
application appears to be as a source of spiral structure, possibly leading to
accretion in non-self-gravitating disks, such as some galactic nuclear disks,
disks around black holes, and proto-planetary disks. All of these examples have
short orbital times so the unstable growth time can be small.Comment: 30 pages, 5 figures, scheduled for ApJ 520, August 1, 199
Elemental analyses of hypervelocity microparticle impact sites on Interplanetary Dust Experiment sensor surfaces
The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity microparticles (approximately 0.2 to approximately 100 micron diameter) that struck the active sensors with enough energy to break down the 0.4 or 1.0 micron thick SIO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. The high purity Al-SiO2-Si substrates allowed detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) was used to create two-dimensional elemental ion intensity maps of microparticle impact sites on the IDE sensors. The element intensities in the central craters of the impacts were corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results were used to classify the particles' origins as 'manmade,' 'natural,' or 'indeterminate.' The last classification resulted from the presence of too little impactor residue, analytical interference from high background contamination, the lack of information on silicon and aluminum residues, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters of these features. Thus far a total of 79 randomly selected microparticle impact sites from the six primary sides of the LDEF have been analyzed: 36 from tray C-9 (Leading (ram), or East, side), 18 from tray C-3 (Trailing (wake), or West, side), 12 from tray B-12 (North side), 4 from tray D-6 (South side), 3 from tray H-11 (Space end), and 6 from tray G-10 (Earth end). Residue from manmade debris was identified in craters on all trays. (Aluminum oxide particle residues were not detectable on the Al/Si substrates.) These results were consistent with the IDE impact record which showed highly variable long term microparticle impact flux rates on the West, Space and Earth sides of the LDEF which could not be ascribed to astronomical variability of micrometeorite density. The IDE record also showed episodic bursts of microparticle impacts on the East, North, and South sides of the satellite, denoting passage through orbital debris clouds or rings
KINETIC, SPATIAL, AND TEMPORAL ASSESSENT OF OVERSPEED TOWING WITH ELASTIC TUBING
Subjects (N = 15) performed sprints over force platforms in a normal condition and in three overspeed conditions of differing elastic tube stretch length. Kinetic and kinematic data were derived. A 3 x 4 RM ANOVA was used to analyze the results. The horizontal and vertical ground reaction force (GRF), and the ratio of horizontal to vertical GRF did not differ among conditions (p ˃ 0.05). However, ground contact time was 8.3% to 10.4% shorter, time between steps was 1.4% to 2.7% lower, distance between steps was up to 1.2% greater, and velocity was 3.7% higher in some overspeed towing conditions compared to the normal condition (p ≤ 0.05). Longer tube conditions were more optimal in most cases. Compared to normal running, overspeed towing results in increased sprinting velocity despite no differences in horizontal or vertical kinetics compared to normal running
Fluctuation-Dissipation-Theorem violation during the formation of a colloidal-glass
The relationship between the conductivity and the polarization noise is
measured in a gel as a function of frequency in the range . It is
found that at the beginning of the transition from a fluid like sol to a solid
like gel the fluctuation dissipation theorem is strongly violated. The
amplitude and the persistence time of this violation are decreasing functions
of frequency. At the lowest frequencies of the measuring range it persists for
times which are about 5% of the time needed to form the gel. This phenomenology
is quite close to the recent theoretical predictions done for the violation of
the fluctuation dissipation theorem in glassy systems.Comment: 6 pages + 4 figure
BIOMECHANICAL ANALYSIS OF TIRE FLIPPING WITH TIRES OF DIFFERENT MASSES AND THEIR POTENTIAL SPECIFICITY TO SPRINTING
This study compared the kinetics of tire flipping with different mass tires and sprinting to evaluate the potential specificity of this training stimulus. Subjects (N=15) performed tire flips with a 54.3 kg tire, a 102.1 kg tire, and sprinted on two large force platforms. Dependent variables included peak horizontal ground reaction force (HGRF), peak vertical GRF (VGRF), horizontal to vertical GRF ratio (H:V), and rate of vertical GRF development (VRFD). A RM ANOVA was used to analyze the data. Significant main effects were found for all dependent variables (p ≤ 0.03). Post-hoc analysis showed that the tires were different (p ≤ 0.04) for all dependent variables except for VRFD (p = 0.99). Post-hoc analysis showed that the 54.3 kg tire was more similar to the kinetics of sprinting for HGRF, VGRF, and H:V. Only tire flipping with a lighter tire was similar to key kinetic parameters of sprinting
Colloidal stabilization via nanoparticle haloing
We present a detailed numerical study of effective interactions between
micron-sized silica spheres, induced by highly charged zirconia nanoparticles.
It is demonstrated that the effective interactions are consistent with a
recently discovered mechanism for colloidal stabilization. In accordance with
the experimental observations, small nanoparticle concentrations induce an
effective repulsion that counteracts the intrinsic van der Waals attraction
between the colloids and thus stabilizes the suspension. At higher nanoparticle
concentrations an attractive potential is recovered, resulting in reentrant
gelation. Monte Carlo simulations of this highly size-asymmetric mixture are
made possible by means of a geometric cluster Monte Carlo algorithm. A
comparison is made to results obtained from the Ornstein-Zernike equations with
the hypernetted-chain closure
Vanishing Fe 3d orbital moments in single-crystalline magnetite
We show detailed magnetic absorption spectroscopy results of an in situ
cleaved high quality single crystal of magnetite. In addition the experimental
setup was carefully optimized to reduce drift, self absorption, and offset
phenomena as far as possible. In strong contradiction to recently published
data, our observed orbital moments are nearly vanishing and the spin moments
are quite close to the integer values proposed by theory. This very important
issue supports the half metallic full spin polarized picture of magnetite.Comment: 7 pages, 4 figure
- …