299 research outputs found

    Kaluza-Klein Consistency, Killing Vectors, and Kahler Spaces

    Full text link
    We make a detailed investigation of all spaces Q_{n_1... n_N}^{q_1... q_N} of the form of U(1) bundles over arbitrary products \prod_i CP^{n_i} of complex projective spaces, with arbitrary winding numbers q_i over each factor in the base. Special cases, including Q_{11}^{11} (sometimes known as T^{11}), Q_{111}^{111} and Q_{21}^{32}, are relevant for compactifications of type IIB and D=11 supergravity. Remarkable ``conspiracies'' allow consistent Kaluza-Klein S^5, S^4 and S^7 sphere reductions of these theories that retain all the Yang-Mills fields of the isometry group in a massless truncation. We prove that such conspiracies do not occur for the reductions on the Q_{n_1... n_N}^{q_1... q_N} spaces, and that it is inconsistent to make a massless truncation in which the non-abelian SU(n_i+1) factors in their isometry groups are retained. In the course of proving this we derive many properties of the spaces Q_{n_1... n_N}^{q_1... q_N} of more general utility. In particular, we show that they always admit Einstein metrics, and that the spaces where q_i=(n_i+1)/\ell all admit two Killing spinors. We also obtain an iterative construction for real metrics on CP^n, and construct the Killing vectors on Q_{n_1... n_N}^{q_1... q_N} in terms of scalar eigenfunctions on CP^{n_i}. We derive bounds that allow us to prove that certain Killing-vector identities on spheres, necessary for consistent Kaluza-Klein reductions, are never satisfied on Q_{n_1... n_N}^{q_1... q_N}.Comment: Latex, 43 pages, references added and typos correcte

    Toric G_2 and Spin(7) holonomy spaces from gravitational instantons and other examples

    Get PDF
    Non-compact G_2 holonomy metrics that arise from a T^2 bundle over a hyper-Kahler space are discussed. These are one parameter deformations of the metrics studied by Gibbons, Lu, Pope and Stelle in hep-th/0108191. Seven-dimensional spaces with G_2 holonomy fibered over the Taub-Nut and the Eguchi-Hanson gravitational instantons are found, together with other examples. By considering the Apostolov-Salamon theorem math.DG/0303197, we construct a new example that, still being a T^2 bundle over hyper-Kahler, represents a non trivial two parameter deformation of the metrics studied in hep-th/0108191. We then review the Spin(7) metrics arising from a T^3 bundle over a hyper-Kahler and we find two parameter deformation of such spaces as well. We show that if the hyper-Kahler base satisfies certain properties, a non trivial three parameter deformations is also possible. The relation between these spaces with the half-flat structures and almost G_2 holonomy spaces is briefly discussed.Comment: 27 pages. Typos corrected. Accepted for publication in Commun.Math.Phy

    A New Fractional D2-brane, G_2 Holonomy and T-duality

    Get PDF
    Recently, a new example of a complete non-compact Ricci-flat metric of G_2 holonomy was constructed, which has an asymptotically locally conical structure at infinity with a circular direction whose radius stabilises. In this paper we find a regular harmonic 3-form in this metric, which we then use in order to obtain an explicit solution for a fractional D2-brane configuration. By performing a T-duality transformation on the stabilised circle, we obtain the type IIB description of the fractional brane, which now corresponds to D3-brane with one of its world-volume directions wrapped around the circle.Comment: Latex, 13 page

    Black hole entropy reveals a 12th "dimension"

    Get PDF
    The Beckenstein-Hawking black hole entropy in string theory and its extensions, as expressed in terms of charges that correspond to central extensions of the supersymmetry algebra, has more symmetries than U-duality. It is invariant under transformations of the charges, involving a 12th (or 13th) ``dimension''. This is an indication that the secret theory behind string theory has a superalgebra involving Lorentz non-scalar extensions (that are not strictly central), as suggested in S-theory, and which could be hidden in M- or F- theories. It is suggested that the idea of spacetime is broader than usual, and that a larger ``spacetime" is partially present in black holes.Comment: Latex, 20 pages, minor formatting correction

    Curved branes from string dualities

    Full text link
    We describe a simple method for generating new string solutions for which the brane worldvolume is a curved space. As a starting point we use solutions with NS-NS charges combined with 2-d CFT's representing different parts of space-time. We illustrate our method with many examples, some of which are associated with conformally invariant sigma models. Using U-duality, we also obtain supergravity solutions with RR charges which can be interpreted as D-branes with non-trivial worldvolume geometry. In particular, we discuss the case of a D5-brane wrapped on AdS_3 x S^3, a solution interpolating between AdS_3 x S^3 x R^5 and AdS_3 x S^3 x S^3 x R, and a D3-brane wrapped over S^3 x R or AdS_2 x S^2. Another class of solutions we discuss involves NS5-branes intersecting over a 3-space and NS5-branes intersecting over a line. These solutions are similar to D7-brane or cosmic string backgrounds.Comment: 21 pages, harvmac; misprint correcte

    Black hole entropy as T-duality invariant

    Get PDF
    We study the Euler numbers and the entropies of the non-extremal intersecting D-branes in ten-dimensions. We use the surface gravity to constrain the compactification radii. We correctly obtain the integer valued Euler numbers for these radii. Moreover, the entropies are found to be invariant under the T-duality transformation. In the extremal limit, we obtain the finite entropies only for two intersecting D-branes. We observe that these entropies are proportional to the product of the charges of each D-brane. We further study the entropies of the boosted metrics. We find that their entropies can be interpreted in term of the microscopic states of D-branes.Comment: 15 pages, Revte

    D0-D4 system and QCD_{3+1}

    Get PDF
    We consider a (3+1)(3+1)-dimensional QCD model using a dual supergravity description with a non-extremal D0D0-D4D4 brane background. We calculate the spectrum of glueball masses and Wilson loops in the background. The mass spectrum is shown to coincide with one in non-extremal D4D4-brane systems, and an area low of spatial Wilson loops is established. We show that there is a region that Kaluza-Klein modes of the Euclidean time direction are decoupled without decoupling glueball masses.Comment: 10 pages, REVTeX; typos correcte

    Fragmentation of Spinning Branes

    Full text link
    The near-horizon geometries of the spinning D3-, M2- and M5-branes are examined by the probes immersed in a co-rotating frame. It is found that the geometries become unstable at critical values of the spin angular velocity by emitting the branes. We show that this instability corresponds to the metastability of the black hole systems and different from the known (local) thermodynamic instability. For the D3 case, the instability found here is in complete agreement with the known metastability of the N=4 super-Yang-Mills theory with R-symmetry chemical potentials.Comment: 16 pages + appendices; v2 is the published version with no essential change from v1 but a reference adde

    Thermodynamics of Kerr-Newman-AdS Black Holes and Conformal Field Theories

    Get PDF
    We study the thermodynamics of four-dimensional Kerr-Newman-AdS black holes both in the canonical and the grand-canonical ensemble. The stability conditions are investigated, and the complete phase diagrams are obtained, which include the Hawking-Page phase transition in the grand-canonical ensemble. In the canonical case, one has a first order transition between small and large black holes, which disappears for sufficiently large electric charge or angular momentum. This disappearance corresponds to a critical point in the phase diagram. Via the AdS/CFT conjecture, the obtained phase structure is also relevant for the corresponding conformal field theory living in a rotating Einstein universe, in the presence of a global background U(1) current. An interesting limit arises when the black holes preserve some supersymmetry. These BPS black holes correspond to highly degenerate zero temperature states in the dual CFT, which lives in an Einstein universe rotating with the speed of light.Comment: 27 pages, RevTeX, 12 ps figures. Minor changes, references added. Final version to appear in Class. Quantum Gra

    Time-dependent backgrounds from supergravity with gauged non-compact R-symmetry

    Full text link
    We obtain a general class of time-dependent, asymptotically de Sitter backgrounds which solve the first order bosonic equations that extremize the action for supergravity with gauged non-compact RR-symmetry. These backgrounds correspond only to neutral fields with the correct sign of kinetic energy. Within N=2 five-dimensional supergravity with vector-superfields we provide examples of multi-centered charged black holes in asymptotic de Sitter space, whose spatial part is given by a time-dependent hyper-K\"ahler space. Reducing these backgrounds to four dimensions yields asymptotically de Sitter multi-centered charged black hole backgrounds and we show that they are related to an instanton configuration by a massive T-duality over time. Within N=2 gauged supergravity in four (and five)-dimensions with hyper-multiplets there could also be neutral cosmological backgrounds that are regular and correspond to the different de Sitter spaces at early and late times.Comment: 28 pages, Latex; minor changes and add reference
    • …
    corecore