419 research outputs found

    Toward Fundamental Fairness in the Kangaroo Courtroom: The Due Process Case Against Statutes Presumptively Closing Juvenile Proceedings

    Get PDF
    Today\u27s juvenile courtroom functions quite differently than did its 1899 Chicago ancestor. During every decade since the 1960s, the juvenile court system has undergone a number of fundamental, structural changes. The most recent of these mega change[s] came during the 1990s, when a number of states abandoned their existing presumptive closure statutes and mandated that juvenile delinquency proceedings be held in the open for the press and the public to see. The policy reviews of this development have been mixed. Some commentators criticize the recent trend, asserting that open proceedings enervate the juvenile system\u27s ultimate goal of rehabilitating wayward youths. Others laud the new openness, arguing that closure no longer serves the rehabilitative ethic, or that young offenders need to be held accountable to the body politic for their increasingly violent and adult-like wrongs against society. This Note also praises the trend toward openness, but it takes a different tack than do these commentators; it suggests, as the United States Supreme Court suggested in Oliver, that if a person\u27s liberty is at stake, public scrutiny is the only tolerably efficient check against potential abuse or malfunction of the adjudicative process. It argues that, aside from the states\u27 policy-based reasons for abandoning presumptive closure statutes, serious due process problems inhere in presumptive closure schemes. Thus, this Note does not concern itself with the states that have recently overturned their presumptive closure statutes; it instead turns its attention toward the nineteen jurisdictions that retain theirs. This Note concludes that the nineteen remaining presumptive closure statutes are unconstitutional because they violate the Due Process Clause of the Fourteenth Amendment. The argument proceeds in two major Parts. Part I lays the necessary factual groundwork for the case against the statutes by describing how they affect today\u27s juvenile proceedings. Part II introduces and evaluates three separate-but related-constitutional challenges to the statutes. That is, it briefly acknowledges and rejects First Amendment and Sixth Amendment arguments, and it then raises a freestanding Fourteenth Amendment due process argument. Part II suggests that, while both the First and Sixth Amendment arguments could reasonably be brought to bear on presumptive closure statutes, only the freestanding due process claim has a strong chance of succeeding under existing Supreme Court jurisprudence. This Note concludes that the statutes are fundamentally unfair under that jurisprudence and can no longer withstand constitutional scrutiny

    The distance to the LMC cluster NGC 1866 and the surrounding field

    Get PDF
    We use the Main Sequence stars in the LMC cluster NGC 1866 and of Red Clump stars in the local field to obtain two independent estimates of the LMC distance. We apply an empirical Main Sequence-fitting technique based on a large sample of subdwarfs with accurate {\sl Hipparcos} parallaxes in order to estimate the cluster distance modulus, and the multicolor Red Clump method to derive distance and reddening of the LMC field. We find that the Main Sequence-fitting and the Red Clump distance moduli are in significant disagreement; NGC 1866 distance is equal to (m−M)0,NGC1866=18.33±\rm (m-M)_{0,NGC 1866}=18.33\pm0.08 (consistent with a previous estimate using the same data and theoretical Main Sequence isochrones), while the field stars provide (m−M)0,field=18.53±\rm (m-M)_{0,field}=18.53\pm0.07. This difference reflects the more general dichotomy in the LMC distance estimates found in the literature. Various possible causes for this disagreement are explored, with particular attention paid to the still uncertain metallicity of the cluster and the star formation history of the field stars.Comment: 5 pages, incl. 1 figure, uses emulateapj.sty, ApJ accepte

    A Reanalysis of theUltraviolet Extinction from Interstellar Dust in the Large Magellanic Cloud

    Get PDF
    We have reanalyzed the Large Magellanic Cloud's (LMC) ultraviolet (UV) extinction using data from the IUE final archive. Our new analysis takes advantage of the improved signal--to--noise of the IUE NEWSIPS reduction, the exclusion of stars with very low reddening, the careful selection of well matched comparison stars, and an analysis of the effects of Galactic foreground dust. Differences between the average extinction curves of the 30 Dor region and the rest of the LMC are reduced compared to previous studies. We find that there is a group of stars with very weak 2175 Ang. bumps that lie in or near the region occupied by the supergiant shell, LMC 2, on the southeast side of 30 Dor. The average extinction curves inside and outside LMC 2 show a very significant difference in 2175 Ang. bump strength, but their far--UV extinctions are similar. While it is unclear whether or not the extinction outside the LMC 2 region can be fit with the relation of Cardelli, Clayton and Mathis (CCM), sightlines near LMC 2 cannot be fit with CCM due to their weak 2175 Ang. bumps. While the extinction properties seen in the LMC lie within the range of properties seen in the Galaxy, the correlations of UV extinction properties with environment seen in the Galaxy do not appear to hold in the LMC.Comment: 29 pages, 10 figures, to be published in Ap

    A programming and a modelling perspective on the evaluation of Java card implementations

    Get PDF
    Java Card Technology has provided a huge step forward in programming smart cards: from assembler to using a high level Object Oriented language. However, the authors have found some differences between the current Java Card version (2.1) and main stream Java that may restrict the benefits of using Java achievable in smartcard programming. In particular, efforts towards evaluating Java Card implementations at a high level of assurance may be hampered by the presence of these differences as well as by the complexity of the Java Card VM and API. The goal of the present paper is to detail the differences from a programming and a modelling point of view

    Dust and Stellar Populations in the Large Magellanic Cloud

    Get PDF
    We present an analysis of line-of-sight extinction measurements obtained using data from the Magellanic Clouds Photometric Survey, which provides 4-filter photometry for millions of stars in the Large Magellanic Cloud. We find that visual extinctions are typically larger by several tenths of a magnitude for stars with effective temperatures > 12000 K, than for stars with effective temperatures between 5500 K and 6500 K. Several repercussions of this population-dependent extinction are discussed. In particular, LMC distance measurements that utilize old stellar populations (such as red clump stars), but use extinctions derived from OB stars, may be biased low. Population-dependent extinction affects the interpretation of color-magnitude diagrams and results in an effective absorption law that is steeper than that intrinsic to the dust for unresolved stellar systems. We further explore the relation between the stellar populations and dust by comparing our extinction map to the 100mu image of the region and identifying potential heating sources of the dust. We conclude that 100mu flux should be used with caution as a star formation tracer, particularly for studies of star formation within galaxies. Finally, we reproduce the observed extinction variation between the hot and cold stellar populations with a simple model of the distribution of the stars and dust where the scaleheight of the cooler stars is >> than that of the dust (which is twice that of the OB stars). (Abridged Abstract)Comment: Accepted for publication in AJ (scheduled for Dec. 1999). 31 pgs (including Figures

    Ultraviolet Imaging Polarimetry of the Large Magellanic Cloud. II. Models

    Get PDF
    Motivated by new sounding-rocket wide-field polarimetric images of the Large Magellanic Cloud, we have used a three-dimensional Monte Carlo radiation transfer code to investigate the escape of near-ultraviolet photons from young stellar associations embedded within a disk of dusty material (i.e. a galaxy). As photons propagate through the disk, they may be scattered or absorbed by dust. Scattered photons are polarized and tracked until they escape to be observed; absorbed photons heat the dust, which radiates isotropically in the far-infrared, where the galaxy is optically thin. The code produces four output images: near- UV and far-IR flux, and near-UV images in the linear Stokes parameters Q and U. From these images we construct simulated UV polarization maps of the LMC. We use these maps to place constraints on the star + dust geometry of the LMC and the optical properties of its dust grains. By tuning the model input parameters to produce maps that match the observed polarization maps, we derive information about the inclination of the LMC disk to the plane of the sky, and about the scattering phase function g. We compute a grid of models with i = 28 deg., 36 deg., and 45 deg., and g = 0.64, 0.70, 0.77, 0.83, and 0.90. The model which best reproduces the observed polarization maps has i = 36 +2/-5 degrees and g ~0.7. Because of the low signal-to-noise in the data, we cannot place firm constraints on the value of g. The highly inclined models do not match the observed centro-symmetric polarization patterns around bright OB associations, or the distribution of polarization values. Our models approximately reproduce the observed ultraviolet photopolarimetry of the western side of the LMC; however, the output images depend on many input parameters and are nonunique.Comment: Accepted to AJ. 20 pages, 7 figure

    Lightcurves of Type Ia Supernovae from Near the Time of Explosion

    Get PDF
    We present a set of 11 type Ia supernova (SN Ia) lightcurves with dense, pre-maximum sampling. These supernovae (SNe), in galaxies behind the Large Magellanic Cloud (LMC), were discovered by the SuperMACHO survey. The SNe span a redshift range of z = 0.11 - 0.35. Our lightcurves contain some of the earliest pre-maximum observations of SNe Ia to date. We also give a functional model that describes the SN Ia lightcurve shape (in our VR-band). Our function uses the "expanding fireball" model of Goldhaber et al. (1998) to describe the rising lightcurve immediately after explosion but constrains it to smoothly join the remainder of the lightcurve. We fit this model to a composite observed VR-band lightcurve of three SNe between redshifts of 0.135 to 0.165. These SNe have not been K-corrected or adjusted to account for reddening. In this redshift range, the observed VR-band most closely matches the rest frame V-band. Using the best fit to our functional description of the lightcurve, we find the time between explosion and observed VR-band maximum to be 17.6+-1.3(stat)+-0.07(sys) rest-frame days for a SN Ia with a VR-band Delta m_{-10} of 0.52mag. For the redshifts sampled, the observed VR-band time-of-maximum brightness should be the same as the rest-frame V-band maximum to within 1.1 rest-frame days.Comment: 35 pages, 18 figures, 15 tables; Higher quality PDF available at http://ctiokw.ctio.noao.edu/~sm/sm/SNrise/index.html; AJ accepte

    The Distances of the Magellanic Clouds

    Get PDF
    The present status of our knowledge of the distances to the Magellanic Clouds is evaluated from a post-Hipparcos perspective. After a brief summary of the effects of structure, reddening, age and metallicity, the primary distance indicators for the Large Magellanic Cloud are reviewed: The SN 1987A ring, Cepheids, RR Lyraes, Mira variables, and Eclipsing Binaries. Distances derived via these methods are weighted and combined to produce final "best" estimates for the Magellanic Clouds distance moduli.Comment: Invited review article to appear in ``Post Hipparcos Cosmic Candles'', F. Caputo & A. Heck (Eds.), Kluwer Academic Publ., Dordrecht, in pres

    Background risk of breast cancer and the association between physical activity and mammographic density

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/ by/4.0
    • …
    corecore