207 research outputs found

    Evaluation of the hydro-meteorological chain in Piemonte Region, north western Italy - analysis of two HYDROPTIMET test cases

    No full text
    International audienceThe HYDROPTIMET Project, Interreg IIIB EU program, is developed in the framework of the prediction and prevention of natural hazards related to severe hydro-meteorological events and aims to the optimisation of Hydro-Meteorological warning systems by the experimentation of new tools (such as numerical models) to be used operationally for risk assessment. The object of the research are the Mesoscale weather phenomena and the response of watersheds with size ranging from 102 to 103 km2. Non-hydrostatic meteorological models are used to catch such phenomena at a regional level focusing on the Quantitative Precipitation Forecast (QPF). Furthermore hydrological Quantitative Discharge Forecast (QDF) are performed by the simulation of run-off generation and flood propagation in the main rivers of the interested territory. In this way observed data and QPF are used, in a real-time configuration, for one-way forcing of the hydrological model that works operationally connected to the Piemonte Region Alert System. The main hydro-meteorological events that interested Piemonte Region in the last years are studied, these are the HYDROPTIMET selected test cases of 14-18 November 2002 and 23-26 November 2002. The results obtained in terms of QPF and QDF offer a sound basis to evaluate the sensitivity of the whole hydro-meteorological chain to the uncertainties in the numerical simulations. Different configurations of non-hydrostatic meteorological models are also analysed

    Methodological approach to the 3D ultrasound reconstruction of human fetal thymus: a preliminary study.

    Get PDF
    The aim of this preliminary study is to propose a new methodological approach to the study of thymic morphology and volume in human fetus by ultrasound, using mathematical three-dimensional (3D) models and comparing them to the volumes obtained by Virtual Organ Computer-aided (VOCAL). Thymic volume and morphology of two fetuses at 21 and at 28 weeks of gestational age were reconstructed using VOCAL system and two different 3D models of fetal thymus were created with a CAD 3D software by an addition of geometrical solids: a conical model for the 21 weeks thymus; an elliptical model for the 28 weeks thymus. We believe that dysmorphism, volume and involution of fetal thymus should be investigated by this method during pregnancy. The relationship between the volumes obtained by VOCAL and those obtained with 3D models should be confirmed by further studies

    Padronização de ensaio imunoadsorvente ligado à enzima (ELISA) para mensuração de IgG do muco abomasal contra antígenos de Haemonchus contortus.

    Get PDF
    O trabalho teve por objetivo a padronização de um teste ELISA indireto, no qual se avaliou a imunidade humoral por meio da quantificação de anticorpos IgG em muco abomasal de ovinos infectados artificialmente com Haemonchus contortus, em comparação com animais isentos de infecções por helmintos gastrointestinais (naïve).Fernando Flores Cardoso, editor técnico

    FITBAR: a web tool for the robust prediction of prokaryotic regulons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The binding of regulatory proteins to their specific DNA targets determines the accurate expression of the neighboring genes. The <it>in silico </it>prediction of new binding sites in completely sequenced genomes is a key aspect in the deeper understanding of gene regulatory networks. Several algorithms have been described to discriminate against false-positives in the prediction of new binding targets; however none of them has been implemented so far to assist the detection of binding sites at the genomic scale.</p> <p>Results</p> <p>FITBAR (Fast Investigation Tool for Bacterial and Archaeal Regulons) is a web service designed to identify new protein binding sites on fully sequenced prokaryotic genomes. This tool consists in a workbench where the significance of the predictions can be compared using different statistical methods, a feature not found in existing resources. The Local Markov Model and the Compound Importance Sampling algorithms have been implemented to compute the P-value of newly discovered binding sites. In addition, FITBAR provides two optimized genomic scanning algorithms using either log-odds or entropy-weighted position-specific scoring matrices. Other significant features include the production of a detailed genomic context map for each detected binding site and the export of the search results in spreadsheet and portable document formats. FITBAR discovery of a high affinity <it>Escherichia coli </it>NagC binding site was validated experimentally <it>in vitro </it>as well as <it>in vivo </it>and published.</p> <p>Conclusions</p> <p>FITBAR was developed in order to allow fast, accurate and statistically robust predictions of prokaryotic regulons. This feature constitutes the main advantage of this web tool over other matrix search programs and does not impair its performance. The web service is available at <url>http://archaea.u-psud.fr/fitbar</url>.</p

    Pre- and postsynaptic N-methyl-D-aspartate receptors are required for sequential printing of fear memory engrams

    Get PDF
    The organization of fear memory involves the participation of multiple brain regions. However, it is largely unknown how fear memory is formed, which circuit pathways are used for "printing" memory engrams across brain regions, and the role of identified brain circuits in memory retrieval. With advanced genetic methods, we combinatorially blocked presynaptic output and manipulated N-methyl-D-aspartate receptor (NMDAR) in the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC) before and after cued fear conditioning. Further, we tagged fear-activated neurons during associative learning for optogenetic memory recall. We found that presynaptic mPFC and postsynaptic BLA NMDARs are required for fear memory formation, but not expression. Our results provide strong evidence that NMDAR-dependent synaptic plasticity drives multi-trace systems consolidation for the sequential printing of fear memory engrams from BLA to mPFC and, subsequently, to the other regions, for flexible memory retrieval
    corecore