43,313 research outputs found

    Effects of quantum deformation on the spin-1/2 Aharonov-Bohm problem

    Get PDF
    In this letter we study the Aharonov-Bohm problem for a spin-1/2 particle in the quantum deformed framework generated by the κ\kappa-Poincar\'{e}-Hopf algebra. We consider the nonrelativistic limit of the κ\kappa-deformed Dirac equation and use the spin-dependent term to impose an upper bound on the magnitude of the deformation parameter ε\varepsilon. By using the self-adjoint extension approach, we examine the scattering and bound state scenarios. After obtaining the scattering phase shift and the SS-matrix, the bound states energies are obtained by analyzing the pole structure of the latter. Using a recently developed general regularization prescription [Phys. Rev. D. \textbf{85}, 041701(R) (2012)], the self-adjoint extension parameter is determined in terms of the physics of the problem. For last, we analyze the problem of helicity conservation.Comment: 12 pages, no figures, submitted for publicatio

    Remarks on the Aharonov-Casher dynamics in a CPT-odd Lorentz-violating background

    Full text link
    The Aharonov-Casher problem in the presence of a Lorentz-violating background nonminimally coupled to a spinor and a gauge field is examined. Using an approach based on the self-adjoint extension method, an expression for the bound state energies is obtained in terms of the physics of the problem by determining the self-adjoint extension parameter.Comment: Matches published versio

    The gluon propagator from large asymmetric lattices

    Get PDF
    The Landau-gauge gluon propagator is computed for the SU(3) gauge theory on lattices up to a size of 323×20032^3 \times 200. We use the standard Wilson action at β=6.0\beta = 6.0 and compare our results with previous computations using large asymmetric and symmetric lattices. In particular, we focus on the impact of the lattice geometry and momentum cuts to achieve compatibility between data from symmetric and asymmetric lattices for a large range of momenta.Comment: Poster presented at Lattice2007, Regensburg, July 30 - August 4, 200

    DC magnetic field generation in unmagnetized shear flows

    Get PDF
    The generation of DC magnetic fields in unmagnetized plasmas with velocity shear is predicted for non relativistic and relativistic scenarios either due to thermal effects or due to the onset of the Kelvin-Helmholtz instability (KHI). A kinetic model describes the growth and the saturation of the DC field. The predictions of the theory are confirmed by multidimensional particle-in-cell simulations, demonstrating the formation of long lived magnetic fields (t∼100sωpi−1t \sim 100s \omega_{pi}^{-1}) along the full longitudinal extent of the shear layer, with transverse width on the electron length scale (γ0c/ωpe\sqrt{\gamma_0}c/\omega_{pe}), reaching magnitudes eBDC/mecωpe∼β0γ0eB_{\mathrm{DC}}/m_ec\omega_{pe}\sim \beta_0\sqrt{\gamma_0}

    On the κ\kappa-Dirac Oscillator revisited

    Get PDF
    This Letter is based on the κ\kappa-Dirac equation, derived from the κ\kappa-Poincar\'{e}-Hopf algebra. It is shown that the κ\kappa-Dirac equation preserves parity while breaks charge conjugation and time reversal symmetries. Introducing the Dirac oscillator prescription, p→p−imωβr\mathbf{p}\to\mathbf{p}-im\omega\beta\mathbf{r}, in the κ\kappa-Dirac equation, one obtains the κ\kappa-Dirac oscillator. Using a decomposition in terms of spin angular functions, one achieves the deformed radial equations, with the associated deformed energy eigenvalues and eigenfunctions. The deformation parameter breaks the infinite degeneracy of the Dirac oscillator. In the case where ε=0\varepsilon=0, one recovers the energy eigenvalues and eigenfunctions of the Dirac oscillator.Comment: 5 pages, no figures, accepted for publication in Physics Letters
    • …
    corecore