135 research outputs found
ΠΠ΅ΡΠ΅ΡΠΎΡΠ°Π·Π½ΡΠΉ ΡΠΈΠ½ΡΠ΅Π· ΡΠ΅ΡΡΠΈΡΠ° ΠΊΠΎΠ±Π°Π»ΡΡΠ°
Objectives. The study aimed to develop new methods for the synthesis of cobalt ferrite (CoFe2O4), which is a precursor for the synthesis of CoFe2O4-based functional materials, as well as to study the physicochemical properties of the obtained phases.Methods. Two methods were used for the synthesis of CoFe2O4: (1) heterophase interaction of hydrated iron oxide with cobalt(II, III) oxide and (2) heterophase interaction of hydrated iron oxide with an aqueous solution of cobalt(II) sulfate (CCo = 0.147 mol/L, solid/liquid = 1:43). In both cases, the precursor was hydrated iron oxide (Fe2O3, 84.4 wt %), which was obtained by the heterophase interaction of iron(III) chloride with a concentrated ammonia solution (6.0β9.5 mol/L). The resulting intermediate products were subjected to thermal treatment at 750 Β°C (synthesis 1) and at 900 Β°C (synthesis 2) for 10β30 h in increments of 10 h. The synthesized phases and products of their thermolysis were studied by differential thermal analysis and differential thermogravimetry (DTAβDTG), X-ray diffraction analysis (XRDA), and granulometry.Results. The hydrated iron oxide sample remained amorphous even up to the crystallization temperature of 445 Β°C, which corresponds to the exothermic effect on the DTA curve. Further heating led to the Ξ±-modification of iron(III) oxide of the hexagonal system (a = b = 5.037 Β± 0.002 Γ
; c = 13.74 Β± 0.01 Γ
), which has an average particle size of 1.1 ΞΌm. XRDA results showed that a synthesis temperature of 750 Β°C (synthesis 1) and a heat treatment duration of 30 h were sufficient for the formation of a single-phase cobalt ferrite (a = 8.388 Β± 0.002 Γ
) with an average particle diameter of 1.9 ΞΌm. For synthesis 2, a higher temperature of 900 Β°C was used because sample weight loss (about 12.5%) was observed in the temperature range of 720β810 Β°C based on the DTA results, which was due to the removal of SO2 and SO3. Moreover, when synthesis temperature and duration were at 900 Β°C and 30 h, respectively, CoFe2O4 with a = 8.389 Β± 0.002 Γ
was formed. The results of the granulometric analysis showed that particles of different diameters were formed. The smallest particle size (1.5 ΞΌm) of cobalt ferrite was obtained by the heterophase interaction of hydrated iron(III) oxide (Fe2O3, 84.4 wt %) with an aqueous solution of cobalt sulfate with CCo = 0.147 mol/L. Conclusions. Depending on the method used for the synthesis of cobalt ferrite, particles of different diameters are formed. The smallest particle size of cobalt ferrite was obtained from the heterophase interaction of hydrated iron(III) oxide with an aqueous solution of cobalt(II) sulfate.Π¦Π΅Π»ΠΈ. Π Π°Π·ΡΠ°Π±ΠΎΡΠΊΠ° Π½ΠΎΠ²ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΡΠΈΠ½ΡΠ΅Π·Π° ΡΠ΅ΡΡΠΈΡΠ° ΠΊΠΎΠ±Π°Π»ΡΡΠ° (CoFe2O4), ΡΠ²Π»ΡΡΡΠ΅Π³ΠΎΡΡ ΠΏΡΠ΅Π΄ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΈΠΊΠΎΠΌ Π΄Π»Ρ ΡΠΈΠ½ΡΠ΅Π·Π° ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² Π½Π° Π΅Π³ΠΎ ΠΎΡΠ½ΠΎΠ²Π΅, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΈΠ·ΠΈΠΊΠΎ-Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ² ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΠ°Π·.ΠΠ΅ΡΠΎΠ΄Ρ. ΠΠΈΠ΄ΡΠ°ΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΠΎΠΊΡΠΈΠ΄ ΠΆΠ΅Π»Π΅Π·Π° ΠΈ ΡΠ΅ΡΡΠΈΡ ΠΊΠΎΠ±Π°Π»ΡΡΠ° ΠΏΠΎΠ»ΡΡΠ°Π»ΠΈ Π³Π΅ΡΠ΅ΡΠΎΡΠ°Π·Π½ΡΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ. Π‘ΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΡΠ°Π·Ρ ΠΈ ΠΏΡΠΎΠ΄ΡΠΊΡΡ ΠΈΡ
ΡΠ΅ΡΠΌΠΎΠ»ΠΈΠ·Π° ΠΈΠ·ΡΡΠ°Π»ΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎ-ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΠΈ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΡΠΌΠΎΠ³ΡΠ°Π²ΠΈΠΌΠ΅ΡΡΠΈΠΈ (ΠΠ’ΠβΠΠ’Π), ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΡΠ°Π·ΠΎΠ²ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° (Π Π€Π) ΠΈ Π³ΡΠ°Π½ΡΠ»ΠΎΠΌΠ΅ΡΡΠΈΠΈ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. Π ΡΡΠ°ΡΡΠ΅ ΠΈΠ·Π»ΠΎΠΆΠ΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π΄Π²ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΡΠΈΠ½ΡΠ΅Π·Π° ΡΠ΅ΡΡΠΈΡΠ° ΠΊΠΎΠ±Π°Π»ΡΡΠ° (CoFe2O4) ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΠ°Π·. Π ΠΎΠ±ΠΎΠΈΡ
ΡΠ»ΡΡΠ°ΡΡ
Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΏΡΠ΅Π΄ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΈΠΊΠ° Π²ΡΡΡΡΠΏΠ°Π» Π³ΠΈΠ΄ΡΠ°ΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΠΎΠΊΡΠΈΠ΄ ΠΆΠ΅Π»Π΅Π·Π°(III) Ρ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ Fe2O3 β 84.4 ΠΌΠ°Ρ. %, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΉ Π³Π΅ΡΠ΅ΡΠΎΡΠ°Π·Π½ΡΠΌ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Ρ
Π»ΠΎΡΠΈΠ΄Π° ΠΆΠ΅Π»Π΅Π·Π°(III) Ρ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌ ΡΠ°ΡΡΠ²ΠΎΡΠΎΠΌ Π°ΠΌΠΌΠΈΠ°ΠΊΠ° (6.0β9.5 ΠΌΠΎΠ»Ρ/Π»). ΠΠ΅ΡΠ²ΡΠΉ ΡΠΏΠΎΡΠΎΠ± Π·Π°ΠΊΠ»ΡΡΠ°Π»ΡΡ Π²ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΈ Π³ΠΈΠ΄ΡΠ°ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΠΊΡΠΈΠ΄Π° ΠΆΠ΅Π»Π΅Π·Π°(III) Ρ ΠΎΠΊΡΠΈΠ΄ΠΎΠΌ ΠΊΠΎΠ±Π°Π»ΡΡΠ°(II, III), Π²ΡΠΎΡΠΎΠΉ β Π²ΠΎ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΈ Π³ΠΈΠ΄ΡΠ°ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΠΊΡΠΈΠ΄Π° ΠΆΠ΅Π»Π΅Π·Π°(III) Ρ Π²ΠΎΠ΄Π½ΡΠΌ ΡΠ°ΡΡΠ²ΠΎΡΠΎΠΌ ΡΡΠ»ΡΡΠ°ΡΠ° ΠΊΠΎΠ±Π°Π»ΡΡΠ°(II) Ρ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠ΅ΠΉ Π‘Π‘ΠΎ = 0.147 ΠΌΠΎΠ»Ρ/Π» (Π’ : Π = 1 : 43). ΠΠΎΠ»ΡΡΠΈΠ²ΡΠΈΠ΅ΡΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΠ΅ ΠΏΡΠΎΠ΄ΡΠΊΡΡ ΠΏΠΎΠ΄Π²Π΅ΡΠ³Π°Π»ΠΈ ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ΅ ΠΏΡΠΈ 750 Β°C (ΡΠΈΠ½ΡΠ΅Π· 1) ΠΈ 900 Β°C (ΡΠΈΠ½ΡΠ΅Π· 2) Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 10β30 Ρ Ρ ΡΠ°Π³ΠΎΠΌ 10 Ρ.ΠΡΠ²ΠΎΠ΄Ρ. Π€Π΅ΡΡΠΈΡ ΠΊΠΎΠ±Π°Π»ΡΡΠ° (CoFe2O4) ΠΏΠΎΠ»ΡΡΠ΅Π½ Π΄Π²ΡΠΌΡ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌΠΈ. Π‘ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ° ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² (Π Π€Π, ΠΠ’ΠβΠΠ’Π, Π³ΡΠ°Π½ΡΠ»ΠΎΠΌΠ΅ΡΡΠΈΠΈ) ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ ΡΠΈΠ·ΠΈΠΊΠΎ-Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΎΠ±ΡΠ°Π·ΡΠΎΠ². Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π³ΠΈΠ΄ΡΠ°ΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΠΎΠΊΡΠΈΠ΄Π° ΠΆΠ΅Π»Π΅Π·Π°(III) Π²ΠΏΠ»ΠΎΡΡ Π΄ΠΎ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΠ·Π°ΡΠΈΠΈ (445 Β°C), ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠΊΠ·ΠΎΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΡΡΡΠ΅ΠΊΡΡ Π½Π° ΠΊΡΠΈΠ²ΠΎΠΉ ΠΠ’Π, ΠΎΡΡΠ°Π΅ΡΡΡ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ°ΠΌΠΎΡΡΠ½ΡΠΌ. ΠΠ°Π»ΡΠ½Π΅ΠΉΡΠ΅Π΅ Π½Π°Π³ΡΠ΅Π²Π°Π½ΠΈΠ΅ Π΅Π³ΠΎ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Ξ±-ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΎΠΊΡΠΈΠ΄Π° ΠΆΠ΅Π»Π΅Π·Π°(III) Π³Π΅ΠΊΡΠ°Π³ΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΡΠΈΠ½Π³ΠΎΠ½ΠΈΠΈ (a = b = 5.037 Β± 0.002 Γ
; c = 13.74 Β± 0.01 Γ
), ΡΡΠ΅Π΄Π½ΠΈΠΉ ΡΠ°Π·ΠΌΠ΅Ρ ΡΠ°ΡΡΠΈΡ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠ°Π²Π΅Π½ 1.1 ΠΌΠΊΠΌ. Π‘ΠΎΠ³Π»Π°ΡΠ½ΠΎ Π΄Π°Π½Π½ΡΠΌ Π Π€Π, Π² ΡΠΈΠ½ΡΠ΅Π·Π΅ 1 ΠΏΡΠΈ 750 Β°C ΠΈ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠ΅ΡΠΌΠΎΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ 30 Ρ ΠΎΠ±ΡΠ°Π·ΡΠ΅ΡΡΡ ΠΎΠ΄Π½ΠΎΡΠ°Π·Π½ΡΠΉ ΡΠ΅ΡΡΠΈΡ ΠΊΠΎΠ±Π°Π»ΡΡΠ° (a = 8.388 Β± 0.002 Γ
) ΡΠΎ ΡΡΠ΅Π΄Π½ΠΈΠΌ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠΎΠΌ ΡΠ°ΡΡΠΈΡ 1.9 ΠΌΠΊΠΌ. Π ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡ 720β810 Β°C Π² ΠΎΠ±ΡΠ°Π·ΡΠ΅ Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ ΡΠ±ΡΠ»Ρ ΠΌΠ°ΡΡΡ (ΠΎΠΊΠΎΠ»ΠΎ 12.5%), ΡΠ²ΡΠ·Π°Π½Π½Π°Ρ Ρ ΡΠ΄Π°Π»Π΅Π½ΠΈΠ΅ΠΌ SO2 ΠΈ SO3. ΠΠΎΡΡΠΎΠΌΡ Π² ΡΠΈΠ½ΡΠ΅Π·Π΅ 2 ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ Π½Π°Π³ΡΠ΅Π²Π°Π½ΠΈΡ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π»ΠΈ Π΄ΠΎ 900 Β°C. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈ 900 Β°C ΠΈ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΠΈΠ½ΡΠ΅Π·Π° 30 Ρ ΡΠ°ΠΊΠΆΠ΅ ΠΎΠ±ΡΠ°Π·ΡΠ΅ΡΡΡ ΡΠ΅ΡΡΠΈΡ ΠΊΠΎΠ±Π°Π»ΡΡΠ° (CoFe2O4) (a = 8.389 Β± 0.002 Γ
). Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ Π³ΡΠ°Π½ΡΠ»ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΡΠΊΠ°Π·ΡΠ²Π°ΡΡ Π½Π° Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠ° ΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΡ
ΡΡ ΡΠ°ΡΡΠΈΡ ΠΎΡ ΡΠΏΠΎΡΠΎΠ±Π° ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΡΠ΅ΡΡΠΈΡΠ° ΠΊΠΎΠ±Π°Π»ΡΡΠ°. ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ ΡΠ°Π·ΠΌΠ΅Ρ ΡΠ°ΡΡΠΈΡ (1.5 ΠΌΠΊΠΌ) ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ Ρ ΡΠ΅ΡΡΠΈΡΠ° ΠΊΠΎΠ±Π°Π»ΡΡΠ°, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π³Π΅ΡΠ΅ΡΠΎΡΠ°Π·Π½ΡΠΌ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π³ΠΈΠ΄ΡΠ°ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΠΊΡΠΈΠ΄Π° ΠΆΠ΅Π»Π΅Π·Π°(III) (Fe2O3 β 84.4 ΠΌΠ°Ρ. %) Ρ Π²ΠΎΠ΄Π½ΡΠΌ ΡΠ°ΡΡΠ²ΠΎΡΠΎΠΌ ΡΡΠ»ΡΡΠ°ΡΠ° ΠΊΠΎΠ±Π°Π»ΡΡΠ° Ρ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠ΅ΠΉ Π‘(Π‘ΠΎ2+) = 0.147 ΠΌΠΎΠ»Ρ/Π»
Revisiting the stability of spatially heterogeneous predator-prey systems under eutrophication
We employ partial integro-differential equations to model trophic interaction
in a spatially extended heterogeneous environment. Compared to classical
reaction-diffusion models, this framework allows us to more realistically
describe the situation where movement of individuals occurs on a faster time
scale than the demographic (population) time scale, and we cannot determine
population growth based on local density. However, most of the results reported
so far for such systems have only been verified numerically and for a
particular choice of model functions, which obviously casts doubts about these
findings. In this paper, we analyse a class of integro-differential
predator-prey models with a highly mobile predator in a heterogeneous
environment, and we reveal the main factors stabilizing such systems. In
particular, we explore an ecologically relevant case of interactions in a
highly eutrophic environment, where the prey carrying capacity can be formally
set to 'infinity'. We investigate two main scenarios: (i) the spatial gradient
of the growth rate is due to abiotic factors only, and (ii) the local growth
rate depends on the global density distribution across the environment (e.g.
due to non-local self-shading). For an arbitrary spatial gradient of the prey
growth rate, we analytically investigate the possibility of the predator-prey
equilibrium in such systems and we explore the conditions of stability of this
equilibrium. In particular, we demonstrate that for a Holling type I (linear)
functional response, the predator can stabilize the system at low prey density
even for an 'unlimited' carrying capacity. We conclude that the interplay
between spatial heterogeneity in the prey growth and fast displacement of the
predator across the habitat works as an efficient stabilizing mechanism.Comment: 2 figures; appendices available on request. To appear in the Bulletin
of Mathematical Biolog
Features of the structure of addictive identity in adolescence
Β© Authors. The relevance of the study of this problem is due to the lack of reliable information about the psychological mechanisms, phenomenology and psychological structure of addictive behavior of a personality in adolescence, which is the main cause of insufficient effectiveness for implementation of corrective measures. In this regard, this article aims to study addictive identity structure in the chemical (alcohol and drug) addiction both at the level of structural components of identity in adolescence and that of their structural organization. The leading methods of the problem study are the empirical methods of studying the structural components of addictive identity. The experiment involved 96 young men at the age of 18-24 years old. Of them 55 people are with alcohol dependence, 41 people with drug (opioid) addiction. The study found that addictive identity of young persons with chemical dependence (alcohol and drug) at the level of structural components is characterized by simple undifferentiated cognitive constructs meaningfully related to the object of addiction; flattened motivational profile, as well as a discrepancy at the level of the valuable component of identity. Identified in the study features allow to state that at the level of structural organization an addictive identity of young persons, both at alcohol and drug dependence, is characterized by disintegrated structural organization of identity. Clinical and psychological diagnosis of addictive identity structure with alcohol and drug addiction should be viewed as prognostic basis in the process of socio-psychological rehabilitation of young men with chemical addiction. The identified structural features of addictive identity serve as predictors in determining the risk groups by the given deviant status
The reciprocal organization of constructive activity in drug addiction
Β© 2016 Akhmetzyanova et al.The urgency of the problem stated in the article is caused by the fact that modern scientific studies show that sustainable neuro-associative connections with the object of addiction arise at chemical addiction. The aim of this study is to examine the features of the reciprocal organization of constructive activities in drug addiction. Study of the constructive activity of patients with drug addiction in comparison with the group in norm was carried out by using the experimental method. The study found a decrease of constructive activity in drug addiction by the characteristics of performance pace and accuracy, regulated by reciprocal and auditory-motor coordination, which, in turn, are also significantly reduced. Reciprocal organization in drug addiction is characterized by impaired proprioceptive kinesthetic afferentation of motor act at safety of outer space organization of movements, lack of differentiation and low handling of movements, movement program disorders, as well as the replacement of the right movements by motor patterns and stereotypes. The obtained results are experimental psychological argument for the need to introduce neuropsychological block in the system of psychotherapeutic impact, which includes the tasks aimed at increasing reciprocal organizations to improve the general level of constructive activity in order to create alternative to the stereotyped models of mental activity and patterns of behavior
Study of social network interference of memory processes in adolescence
Memory is the fundamental basis of human learning. Conceptual assessment and study of the memory mechanisms, its formation, consolidation and preservation at different levels of the structural and functional organization of the nervous system constitutes the necessary knowledge for solving many problems of practical and fundamental psychology. This article presents the study of memory, namely the process of its transition from a short-term to a more stable long-term form in a digital environment under the influence of the interference factor of social networks. The aim of the work is to study the influence of the social network interference factor on the processes of consolidation and reconsolidation of memory in adolescence. The total sample size was 68 adolescents aged 12β17 years. The authors conducted an experiment to achieve this goal. Its results showed that adolescents have difficulty remembering information in the form of short, successive videos in the digital space. It was found that videos that are characterized not only by visual accompaniment, but also by speech production are subject to better memorization. Under the influence of the interfering factor of social networks, adolescents faced difficulties in linking individual elements of stimuli with each other β they connected elements of one video with elements of another. According to one of the provisions of the theory of interference, information storage is characterized by the βunbindingβ of representations of objects, followed by their reverse linking in an arbitrary combination during further reproduction
Intercomparison of five nets used for mesozooplankton sampling
Intercomparison of nets commonly used for mesozooplankton sampling in the Black and Mediterranean seas was attempted within SESAME (Southern European Seas: Assessing and Modelling Ecosystem Changes) project. Five nets were compared: three Juday nets equipped with 150 ΞΌm, 180 ΞΌm and 200 ΞΌm mesh size, Nansen net (100 ΞΌm mesh size) and WP2 (200 ΞΌm mesh size). Replicated samples were collected at one station in the western Black Sea offshore waters in April 2009. Collected samples were analyzed at species level (except for meroplankton), stages (for copepods) and size length. A decrease of total abundance values was observed with increasing mesh size, due to the significantly higher numbers of animals smaller than 1 mm in the samples obtained by fine mesh size than with coarser nets. Few comparisons were revealed significant for the abundance of animals with 1-2 mm length, while no significance was detected for specimens larger than 2 mm. The above differences resulted in discripancies between nets regarding species and stages composition. Biomass values did not differ significantly between nets, due to the strong contribution to total biomass of the large animals fraction (Calanus euxinus). The smallest and the largest animals revealed high variability between replicates collected by Nansen, Juday- 200 ΞΌm and WP2 nets. Correction factors were calculated for the conversion of abundance values between each couple of nets. The detected differences between nets regarding the abundance and biomass, the community taxonomic composition and size structure, as well as the estimated correction factors, provide useful information for the harmonization of data obtained by the above nets in the Black Sea
ΠΠΠΠΠ‘ΠΠΠ« Π¦ΠΠ ΠΠΠΠΠ― Π ΠΠΠ€ΠΠΠ―, Π‘Π’ΠΠΠΠΠΠΠΠ ΠΠΠΠΠΠ«Π ΠΠΠ‘ΠΠΠΠΠ Π ΠΠΠΠΠΠΠΠΠΠ¬ΠΠ«Π₯ ΠΠΠΠΠΠΠ’ΠΠ (Y, Sc, Er): ΠΠΠΠ«Π ΠΠΠ’ΠΠΠ« Π‘ΠΠΠ’ΠΠΠ Π Π‘ΠΠΠΠ‘Π’ΠΠ
The results of elaborating a method for the synthesis of zirconia and hafnia doped by rare earths (yttrium, erbium and scandium) by using low-hydrated hydroxides of zirconium and hafnium as precursors are reported. The low-hydrated zirconium and hafnium hydroxides were prepared using the heterophase reaction. The physicochemical properties (including sorption properties) of low-hydrated zirconium and hafnium hydroxides ZrxHf1-x(OH)3Γ·1O0.5Γ·1.5Β·0.9Γ·2.9H2Owere studied. The scheme of thermal decomposition of low-hydrated hydroxides in air was determined. The sorption properties of the low-hydrated hafnium hydroxide are less pronounced owing to the lower amount of sorption centers, in this case, hydroxo and aqua groups. The sequence of stages of thermal decomposition of rare earth acetates was elucidated. Single-phase zirconia and hafnia doped by rare earths (yttrium, erbium and scandium) were obtained. The parameters of the elementary lattice were calculated for each phase. It was established that the stabilization of zirconium dioxide with yttria leads to the formation of interstitial solid solutions based on tetragonal zirconia (in the case of the composition Y2O3Γ4ZrO2 - cubic modification), with erbium oxide - interstitial solid solutions based on cubic zirconia; with scandium oxide - solid solutions based on tetragonal zirconia. The article presents the results of measuring electrical conductivity.Π ΡΡΠ°ΡΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ ΡΠΈΠ½ΡΠ΅Π·Π° Π΄ΠΈΠΎΠΊΡΠΈΠ΄ΠΎΠ² ΡΠΈΡΠΊΠΎΠ½ΠΈΡ ΠΈ Π³Π°ΡΠ½ΠΈΡ, Π»Π΅Π³ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΡΠ΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡΠ½ΡΠΌΠΈ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΠΌΠΈ (ΠΈΡΡΡΠΈΠ΅ΠΌ, ΡΡΠ±ΠΈΠ΅ΠΌ ΠΈ ΡΠΊΠ°Π½Π΄ΠΈΠ΅ΠΌ), Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΏΡΠ΅Π΄ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΈΠΊΠΎΠ² ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΡΡ
ΠΈ Π±ΠΈΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠ°Π»ΠΎΠ²ΠΎΠ΄Π½ΡΡ
Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ΄ΠΎΠ² (ΠΠΠ) ΡΠΈΡΠΊΠΎΠ½ΠΈΡ ΠΈ/ΠΈΠ»ΠΈ Π³Π°ΡΠ½ΠΈΡ ΠΎΠ±ΡΠ΅Π³ΠΎ ΡΠΎΡΡΠ°Π²Π° ZrxHf1-x(OH)3Γ·1O0.5Γ·1.5β0.9Γ·2.9H2O, 0β€Ρ
β€1, Π° ΡΠ°ΠΊΠΆΠ΅ Π°ΡΠ΅ΡΠ°ΡΠΎΠ² ΡΠ΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡΠ½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ². Π ΡΠ²ΠΎΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ, ΠΠΠ ΡΠΈΡΠΊΠΎΠ½ΠΈΡ ΠΈ/ΠΈΠ»ΠΈ Π³Π°ΡΠ½ΠΈΡ ΠΏΠΎΠ»ΡΡΠ°Π»ΠΈ Π³Π΅ΡΠ΅ΡΠΎΡΠ°Π·Π½ΡΠΌ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ ΠΎΠΊΡΠΈΡ
Π»ΠΎΡΠΈΠ΄ΠΎΠ² ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² Ρ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌ ΡΠ°ΡΡΠ²ΠΎΡΠΎΠΌ Π°ΠΌΠΌΠΈΠ°ΠΊΠ°. ΠΠ·ΡΡΠ΅Π½Ρ ΡΠΈΠ·ΠΈΠΊΠΎ-Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΌΠ°Π»ΠΎΠ²ΠΎΠ΄Π½ΡΡ
Π³ΠΈΠ΄ΡΠΎΠΊΡΠΈΠ΄ΠΎΠ². ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈ Π½Π°Π³ΡΠ΅Π²Π°Π½ΠΈΠΈ Π΄ΠΎ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ 1200 Β°Π‘ Π² ΡΠ»ΡΡΠ°Π΅ ΡΠ΅ΡΠΌΠΎΠ»ΠΈΠ·Π° ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΡΡ
ΠΠΠ ΠΎΠ±ΡΠ°Π·ΡΡΡΡΡ ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΈΠ½Π½ΡΠ΅ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ
Π΄ΠΈΠΎΠΊΡΠΈΠ΄ΠΎΠ², Π° ΠΏΡΠΈ ΡΠ΅ΡΠΌΠΎΠ»ΠΈΠ·Π΅ Π±ΠΈΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΠΠ - ΡΠ²Π΅ΡΠ΄ΡΠ΅ ΡΠ°ΡΡΠ²ΠΎΡΡ Π·Π°ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠΎΡΡΠ°Π²Π° ZrxHf1-xO2 (0β€Ρ
β€1) ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΈΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π° ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΡΡΠ°Π΄ΠΈΠΉ ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΡ Π°ΡΠ΅ΡΠ°ΡΠΎΠ² ΠΈΡΡΡΠΈΡ, ΡΠΊΠ°Π½Π΄ΠΈΡ ΠΈ ΡΡΠ±ΠΈΡ Ρ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΎΠΊΡΠΈΠ΄ΠΎΠ². ΠΠΎΠ»ΡΡΠ΅Π½Ρ Π΄ΠΈΠΊΠΎΡΠΈΠ΄Ρ ΡΠΈΡΠΊΠΎΠ½ΠΈΡ ΠΈ Π³Π°ΡΠ½ΠΈΡ, ΡΡΠ°Π±ΠΈΠ»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΎΠΊΡΠΈΠ΄Π°ΠΌΠΈ ΡΠ΅Π΄ΠΊΠΎΠ·Π΅ΠΌΠ΅Π»ΡΠ½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ², ΡΠ»Π΅Π΄ΡΡΡΠΈΡ
ΡΠΎΡΡΠ°Π²ΠΎΠ²: Y2O3β4ZrO2, Y2O3β16ZrO2, Y2O3β20ZrO2, Y2O3β4HfO2, Y2O3β6HfO2, Y2O3β9HfO2, Y2O3β18HfO2, Er2O3β27ZrO2, Er2O3β35ZrO2, Sc2O3β10ZrO2, Sc2O3β13ZrO2. ΠΠ»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠ°Π·Ρ ΡΠ°ΡΡΡΠΈΡΠ°Π½Ρ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΠΎΠΉ ΡΠ΅ΡΠ΅ΡΠΊΠΈ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈ ΡΡΠ°Π±ΠΈΠ»ΠΈΠ·Π°ΡΠΈΠΈ Π΄ΠΈΠΎΠΊΡΠΈΠ΄Π° ΡΠΈΡΠΊΠΎΠ½ΠΈΡ ΠΎΠΊΡΠΈΠ΄ΠΎΠΌ ΠΈΡΡΡΠΈΡ ΠΎΠ±ΡΠ°Π·ΡΡΡΡΡ ΡΠ²Π΅ΡΠ΄ΡΠ΅ ΡΠ°ΡΡΠ²ΠΎΡΡ Π²Π½Π΅Π΄ΡΠ΅Π½ΠΈΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ZrO2 ΡΠ΅ΡΡΠ°Π³ΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ (Π² ΡΠ»ΡΡΠ°Π΅ ΡΠΎΡΡΠ°Π²Π° Y2O3β4ZrO2 - ΠΊΡΠ±ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ), ΠΎΠΊΡΠΈΠ΄ΠΎΠΌ ΡΡΠ±ΠΈΡ - ΡΠ²Π΅ΡΠ΄ΡΠ΅ ΡΠ°ΡΡΠ²ΠΎΡΡ Π²Π½Π΅Π΄ΡΠ΅Π½ΠΈΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π΄ΠΈΠΎΠΊΡΠΈΠ΄Π° ΡΠΈΡΠΊΠΎΠ½ΠΈΡ ΠΊΡΠ±ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ; ΠΎΠΊΡΠΈΠ΄ΠΎΠΌ ΡΠΊΠ°Π½Π΄ΠΈΡ - ΡΠ²Π΅ΡΠ΄ΡΠ΅ ΡΠ°ΡΡΠ²ΠΎΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π΄ΠΈΠΎΠΊΡΠΈΠ΄Π° ΡΠΈΡΠΊΠΎΠ½ΠΈΡ ΡΠ΅ΡΡΠ°Π³ΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ. Π ΡΡΠ°ΡΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡΠΈ
ΠΠΠΠΠΠ Π Π’ΠΠΠ’ΠΠ: Π‘ΠΠ‘Π’ΠΠ―ΠΠΠ ΠΠΠ ΠΠΠΠΠ Π Π«ΠΠΠ, ΠΠΠΠΠ‘Π’Π ΠΠ ΠΠΠΠΠΠΠΠ―, Π‘Π«Π Π¬ΠΠΠ«Π ΠΠ‘Π’ΠΠ§ΠΠΠΠ. Π§Π°ΡΡΡ 2
Niobium and tantalum are rare refractory metals having significant industrial importance. Their reserves are attributed to Β«criticalΒ» raw material, thus leading to the necessity of estimating the risks connected with primary and technogenic raw sources of niobium and tantalum and the effect of these factors on the proposals and demands for these metals and their compounds taking into account the traditional and new areas of application. The analysis of worldβs reserves of niobium and tantalum has been made. The dynamics of changing the raw material base structure and the technological solutions realized and proposed for their processing is considered. The modern market of materials on the basis of niobium and tantalum is described; the basic players in this market are specified; the trends in fluctuation of functional material consumption structure on the basis of these metals are considered.ΠΠΈΠΎΠ±ΠΈΠΉ ΠΈ ΡΠ°Π½ΡΠ°Π» β ΡΠ΅Π΄ΠΊΠΈΠ΅ ΡΡΠ³ΠΎΠΏΠ»Π°Π²ΠΊΠΈΠ΅ ΠΌΠ΅ΡΠ°Π»Π»Ρ, ΠΈΠΌΠ΅ΡΡΠΈΠ΅ Π²Π°ΠΆΠ½ΠΎΠ΅ ΠΏΡΠΎΠΌΡΡΠ»Π΅Π½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅. ΠΡ
Π·Π°ΠΏΠ°ΡΡ ΠΎΡΠ½ΠΎΡΡΡ ΠΊ Β«ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΌΡΒ» ΡΡΡΡΡ, ΡΡΠΎ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΠΈΡΠΊΠΎΠ², ΡΠ²ΡΠ·Π°Π½Π½ΡΡ
Ρ Π½Π°Π»ΠΈΡΠΈΠ΅ΠΌ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΡΡ
ΠΈ ΡΠ΅Ρ
Π½ΠΎΠ³Π΅Π½Π½ΡΡ
ΡΡΡΡΠ΅Π²ΡΡ
ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ² Π½ΠΈΠΎΠ±ΠΈΡ ΠΈ ΡΠ°Π½ΡΠ°Π»Π° ΠΈ Π²Π»ΠΈΡΠ½ΠΈΠ΅ΠΌ ΡΡΠΈΡ
ΡΠ°ΠΊΡΠΎΡΠΎΠ² Π½Π° ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ ΡΠΏΡΠΎΡ Π½Π° ΡΡΠΈ ΠΌΠ΅ΡΠ°Π»Π»Ρ ΠΈ ΠΈΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ Ρ ΡΡΠ΅ΡΠΎΠΌ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΡΡ
ΠΈ Π½ΠΎΠ²ΡΡ
ΠΎΠ±Π»Π°ΡΡΠ΅ΠΉ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ. ΠΡΠΏΠΎΠ»Π½Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΌΠΈΡΠΎΠ²ΡΡ
Π·Π°ΠΏΠ°ΡΠΎΠ² Π½ΠΈΠΎΠ±ΠΈΡ ΠΈ ΡΠ°Π½ΡΠ°Π»Π°, ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Π° Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΡΡΡΠΊΡΡΡΡ ΡΡΡΡΠ΅Π²ΠΎΠΉ Π±Π°Π·Ρ ΠΈ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅ΡΠ΅Π½ΠΈΠΉ, ΡΠ΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΡ
ΠΈ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΠΌΡΡ
Π΄Π»Ρ ΠΈΡ
ΠΏΠ΅ΡΠ΅ΡΠ°Π±ΠΎΡΠΊΠΈ. ΠΠΏΠΈΡΠ°Π½ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΉ ΡΡΠ½ΠΎΠΊ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π½ΠΈΠΎΠ±ΠΈΡ ΠΈ ΡΠ°Π½ΡΠ°Π»Π°, ΡΠΊΠ°Π·Π°Π½Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΈΠ³ΡΠΎΠΊΠΈ Π½Π° ΡΡΠΎΠΌ ΡΡΠ½ΠΊΠ΅, ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΡΠ΅Π½Π΄Π΅Π½ΡΠΈΠΈ Π² ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΡΡΡΡΠΊΡΡΡΡ ΠΏΠΎΡΡΠ΅Π±Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΡΠΈΡ
ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ²
ΠΠΠΠΠΠ Π Π’ΠΠΠ’ΠΠ: Π‘ΠΠ‘Π’ΠΠ―ΠΠΠ ΠΠΠ ΠΠΠΠΠ Π Π«ΠΠΠ, ΠΠΠΠΠ‘Π’Π ΠΠ ΠΠΠΠΠΠΠΠ―, Π‘Π«Π Π¬ΠΠΠ«Π ΠΠ‘Π’ΠΠ§ΠΠΠΠ.Π§Π°ΡΡΡ 1
Niobium and tantalum are rare refractory metals of industrial significant importance. Their stores are reckoned to the Β«criticalΒ» raw materials that results in the necessity of estimating the risks connected to the availability of fundamental and technogenic raw sources of niobium and tantalum and the effect of these factors on the offers and demand for these metals and their compounds taking into account the traditional and new areas of their application. The article gives an analysis of the worldβs reserves of niobium and tantalum; the dynamics of structural change of the raw-material base and the technological solutions realized and offered for their processing is considered. The modern market of materials based on niobium and tantalum is described; basic players in this market are determined; the tendencies in structural change in the consumption of functional materials on the basis of these metals are considered.ΠΠΈΠΎΠ±ΠΈΠΉ ΠΈ ΡΠ°Π½ΡΠ°Π» β ΡΠ΅Π΄ΠΊΠΈΠ΅ ΡΡΠ³ΠΎΠΏΠ»Π°Π²ΠΊΠΈΠ΅ ΠΌΠ΅ΡΠ°Π»Π»Ρ, ΠΈΠΌΠ΅ΡΡΠΈΠ΅ Π²Π°ΠΆΠ½ΠΎΠ΅ ΠΏΡΠΎΠΌΡΡΠ»Π΅Π½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅. ΠΡ
Π·Π°ΠΏΠ°ΡΡ ΠΎΡΠ½ΠΎΡΡΡ ΠΊ Β«ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΌΡΒ» ΡΡΡΡΡ, ΡΡΠΎ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΠΈΡΠΊΠΎΠ², ΡΠ²ΡΠ·Π°Π½Π½ΡΡ
Ρ Π½Π°Π»ΠΈΡΠΈΠ΅ΠΌ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΡΡ
ΠΈ ΡΠ΅Ρ
Π½ΠΎΠ³Π΅Π½Π½ΡΡ
ΡΡΡΡΠ΅Π²ΡΡ
ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ² Π½ΠΈΠΎΠ±ΠΈΡ ΠΈ ΡΠ°Π½ΡΠ°Π»Π° ΠΈ Π²Π»ΠΈΡΠ½ΠΈΠ΅ΠΌ ΡΡΠΈΡ
ΡΠ°ΠΊΡΠΎΡΠΎΠ² Π½Π° ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ ΡΠΏΡΠΎΡ Π½Π° ΡΡΠΈ ΠΌΠ΅ΡΠ°Π»Π»Ρ ΠΈ ΠΈΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ, Ρ ΡΡΠ΅ΡΠΎΠΌ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΡΡ
ΠΈ Π½ΠΎΠ²ΡΡ
ΠΎΠ±Π»Π°ΡΡΠ΅ΠΉ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ. Π ΡΡΠ°ΡΡΠ΅ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΌΠΈΡΠΎΠ²ΡΡ
Π·Π°ΠΏΠ°ΡΠΎΠ² Π½ΠΈΠΎΠ±ΠΈΡ ΠΈ ΡΠ°Π½ΡΠ°Π»Π°, ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Π° Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΡΡΡΠΊΡΡΡΡ ΡΡΡΡΠ΅Π²ΠΎΠΉ Π±Π°Π·Ρ ΠΈ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅ΡΠ΅Π½ΠΈΠΉ, ΡΠ΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΡ
ΠΈ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΠΌΡΡ
Π΄Π»Ρ ΠΈΡ
ΠΏΠ΅ΡΠ΅ΡΠ°Π±ΠΎΡΠΊΠΈ. ΠΠΏΠΈΡΠ°Π½ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΉ ΡΡΠ½ΠΎΠΊ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π½ΠΈΠΎΠ±ΠΈΡ ΠΈ ΡΠ°Π½ΡΠ°Π»Π°, ΡΠΊΠ°Π·Π°Π½Ρ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΈΠ³ΡΠΎΠΊΠΈ Π½Π° ΡΡΠΎΠΌ ΡΡΠ½ΠΊΠ΅, ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΡΠ΅Π½Π΄Π΅Π½ΡΠΈΠΈ Π² ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΡΡΡΡΠΊΡΡΡΡ ΠΏΠΎΡΡΠ΅Π±Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΡΠΈΡ
ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ²
The technology of forming the studentsβ research competence in the process of learning a foreign language
Β© Canadian Center of Science and Education. The research issue appears important as today's system of professional education requires an optimal structure of the academic disciplines intended for the studentsβ research and creative abilities development. In this regard, the purpose of the article is to develop a technique for forming the studentsβ research competence in the process of learning a foreign language. The flagship approaches to the development of this technology have become the research and modular competence-based approaches. The article describes the technology of the studentsβ research competence formation in the process of learning a foreign language, the proposed stages of which are universal and can be also used in the formation of the studentsβ communicative competence, while the submitted steps are particularly aimed at the formation of the studentsβ research competence in the process of learning a foreign language. The materials of this article may be of value to the foreign language teachers while selecting and structuring the foreign language learning curriculum aimed at the formation of the research competence among the students of higher professional schools
- β¦