159 research outputs found

    Detailed Analysis of Transverse Emittance of the FLUTE Electron Bunch

    Get PDF
    The com­pact and ver­sa­tile lin­ear ac­cel­er­a­tor-based test fa­cil­ity FLUTE (Fer­n­in­frarot Linac- Und Test-Ex­per­i­ment) is op­er­ated at KIT. Its pri­mary goal is to serve as a plat­form for a va­ri­ety of ac­cel­er­a­tor R\&D stud­ies like the gen­er­a­tion of strong ul­tra-short ter­a­hertz pulses. The am­pli­tude of the gen­er­ated co­her­ent THz pulses is pro­por­tional to the square num­ber of par­ti­cles in the bunch. With the trans­verse emit­tance a mea­sure for the trans­verse par­ti­cle den­sity can be de­ter­mined. It is there­fore a vital pa­ra­me­ter in the op­ti­miza­tion for op­er­a­tion. In a sys­tem­atic study, the trans­verse emit­tance of the elec­tron beam was mea­sured in the FLUTE in­jec­tor. A de­tailed analy­sis con­sid­ers dif­fer­ent in­flu­ences such as the bunch charge and com­pares this with par­ti­cle track­ing sim­u­la­tions car­ried out with ASTRA. In this con­tri­bu­tion, the key find­ings of this analy­sis are dis­cussed

    Estimating and correcting interference fringes in infrared spectra in infrared hyperspectral imaging

    Get PDF
    Short-term acclimation response of individual cells of Thalassiosira weissflogii was monitored by Synchrotron FTIR imaging over the span of 75 minutes. The cells, collected from batch cultures, were maintained in a constant flow of medium, at an irradiance of 120 μmol m−2 s−1 and at 20 °C. Multiple internal reflections due to the micro fluidic channel were modeled, and showed that fringes are additive sinusoids to the pure absorption of the other components of the system. Preprocessing of the hyperspectral cube (x, y, Abs(λ)) included removing spectral fringe using an EMSC approach. Principal component analysis of the time series of hyperspectral cubes showed macromolecular pool variations (carbohydrates, lipids and DNA/RNA) of less than 2% after fringe correction

    Observation of microwave radiation using low-cost detectors at the anka storage ring

    Get PDF
    Synchrotron light sources emit Coherent Synchrotron Radiation (CSR) for wavelengths longer than or equal to the bunch length. At most storage rings CSR cannot be observed, because the vacuum chamber cuts off radiation with long wavelengths. There are different approaches for shifting the CSR to shorter wavelengths that can propagate through the beam pipe, e.g.: the accelerator optics can be optimized for a low momentum compaction factor, thus reducing the bunch length. Alternatively, laser slicing can modulate substructures on long bunches [1]. Both techniques extend the CSR spectrum to shorter wavelengths, so that CSR is emitted at wavelengths below the waveguide shielding cut off. Usually fast detectors, like superconducting bolometer detector systems or Schottky barrier diodes, are used for observation of dynamic processes in accelerator physics. In this paper, we present observations of microwave radiation at ANKA using an alternative detector, a LNB (Low Noise Block) system. These devices are usually used in standard TV-SAT-receivers and are very cheap. We determined the time response of LNBs to be below 100 ns. The sensitivity of LNBs is optimized to detect very low intensity ”noise-like” signals. This microwave radiation study shows the possibility to apply the LNB for bunch length monitoring

    Measuring the Coherent Synchrotron Radiation Far Field with Electro-Optical Techniques

    Get PDF
    For measuring the temporal profile of the coherent synchrotron radiation (CSR) a setup based on electro-optical spectral decoding (EOSD) will be installed as part of the sensor network at the KIT storage ring KARA (Karlsruhe Research Accelerator). The EOSD technique allows a single-shot, phase sensitive measurement of the complete spectrum of the CSR far field radiation at each turn. Therefore, the dynamics of the bunch evolution, e.g. the microbunching, can be observed in detail. Especially, in synchronized combination with the already established near-field EOSD, this method could provide deeper insights in the interplay of bunch profile and CSR generation for each individual electron bunch. For a successful implementation of the EOSD single shot setup, measurements with electro-optical sampling (EOS) are performed. With EOS the THz pulse shape is scanned over several turns by shifting the delay of laser and THz pulse. In this contribution different steps towards the installation of the EOSD far field setup are summarized

    Radiation Safety at FLUTE with Special Emphasis on Activation Issues

    Get PDF
    The accelerator FLUTE (name abbreviation derived from its German name: Ferninfrarot Linac- und TestExperiment) has been set up in cooperation with DESY and PSI [1]. The electron source and diagnostics has commenced operation. General safety issues of FLUTE are covered in this paper. The activation of the accelerator and vacuum parts were predicted previously [2]. The attention is given to the activation of aluminum and impurities in the electron absorber of the beam dump. Potential air activation in the experimental hall is also discussed
    corecore