55 research outputs found

    Comparative functional genomics approach for the annotation of proteins in Unclassified Halophilic archaeon DL31

    Get PDF
    The structure, function and sub-cellular location prediction for the unknown proteins from Unclassified Halophilic archaeon DL31 were carried out for characterization of the proteins in their respective families. The 991 genes for hypothetical proteins in Halophilic archaeon DL31 chromosome were predicted by the application of computational methods and Bioinformatics web tools. The structure predictions for 206 unknown proteins were possible whereas functions were predicted in 825 protein sequences. The function prediction for the proteins were done by using Bioinformatics web tools like CDD-BLAST, INTERPROSCAN and PFAM by searching protein databases for the presence of conserved domains. The Sub-cellular location predictions were done for all the unknown proteins by using CELLO v 2.5 server. While tertiary structures were constructed using PS2 Server- Protein Structure Prediction server. This study revealed structural, functional and Sub-cellular localization of unknown proteins in Unclassified Halophilic archaeon DL31chromosome

    Exact States in Waveguides With Periodically Modulated Nonlinearity

    Get PDF
    We introduce a one-dimensional model based on the nonlinear Schrodinger/Gross-Pitaevskii equation where the local nonlinearity is subject to spatially periodic modulation in terms of the Jacobi dn function, with three free parameters including the period, amplitude, and internal form-factor. An exact periodic solution is found for each set of parameters and, which is more important for physical realizations, we solve the inverse problem and predict the period and amplitude of the modulation that yields a particular exact spatially periodic state. Numerical stability analysis demonstrates that the periodic states become modulationally unstable for large periods, and regain stability in the limit of an infinite period, which corresponds to a bright soliton pinned to a localized nonlinearity-modulation pattern. Exact dark-bright soliton complex in a coupled system with a localized modulation structure is also briefly considered . The system can be realized in planar optical waveguides and cigar-shaped atomic Bose-Einstein condensates.Comment: EPL, in pres

    Supercontinuum Generation in a Silicon Nanowire Embedded Photonic Crystal Fiber for Optical Coherence Tomography Applications

    Get PDF
    KSN wishes to thank CSIR [No: 03(1264)/12/EMR-11] and DST [No: SR/FTP/PS-66/2009], Government of India, for the financial support through the project.Postprin

    Exact states in waveguides with periodically modulated nonlinearity

    Get PDF
    Partial financial support has been provided by the Research Grants Council (Hong Kong) contract HKU 17200815.Peer reviewedPostprin

    Completely integrable models of non-linear optics

    Full text link
    The models of the non-linear optics in which solitons were appeared are considered. These models are of paramount importance in studies of non-linear wave phenomena. The classical examples of phenomena of this kind are the self-focusing, self-induced transparency, and parametric interaction of three waves. At the present time there are a number of the theories based on completely integrable systems of equations, which are both generations of the original known models and new ones. The modified Korteweg-de Vries equation, the non- linear Schrodinger equation, the derivative non-linear Schrodinger equation, Sine-Gordon equation, the reduced Maxwell-Bloch equation, Hirota equation, the principal chiral field equations, and the equations of massive Thirring model are gradually putting together a list of soliton equations, which are usually to be found in non-linear optics theory.Comment: Latex, 17 pages, no figures, submitted to Pramana

    Conservation Laws in Higher-Order Nonlinear Optical Effects

    Full text link
    Conservation laws of the nonlinear Schr\"{o}dinger equation are studied in the presence of higher-order nonlinear optical effects including the third-order dispersion and the self-steepening. In a context of group theory, we derive a general expression for infinitely many conserved currents and charges of the coupled higher-order nonlinear Schr\"{o}dinger equation. The first few currents and charges are also presented explicitly. Due to the higher-order effects, conservation laws of the nonlinear Schr\"{o}dinger equation are violated in general. The differences between the types of the conserved currents for the Hirota and the Sasa-Satsuma equations imply that the higher-order terms determine the inherent types of conserved quantities for each integrable cases of the higher-order nonlinear Schr\"{o}dinger equation

    Perturbation theory for nearly integrable multi-component nonlinear PDEs

    Full text link
    The Riemann-Hilbert problem associated with the integrable PDE is used as a nonlinear transformation of the nearly integrable PDE to the spectral space. The temporal evolution of the spectral data is derived with account for arbitrary perturbations and is given in the form of exact equations, which generate the sequence of approximate ODEs in successive orders with respect to the perturbation. For vector nearly integrable PDEs, embracing the vector NLS and complex modified KdV equations, the main result is formulated in a theorem. For a single vector soliton the evolution equations for the soliton parameters and first-order radiation are given in explicit formComment: Submitted to Journal of Mathematical Physics (References are corrected

    Influence of metals and metalloids on the composition and fluorescence quenching of the extracellular polymeric substances produced by the polymorphic fungus <i>Aureobasidium pullulans</i>

    Get PDF
    Aureobasidium pullulansis a ubiquitous and widely distributed fungus in the environment, and exhibits substantial tolerance against toxic metals. However, the interactions between metals and metalloids with the copious extracellular polymeric substances (EPS) produced byA. pullulansand possible relationships to tolerance are not well understood. In this study, it was found that mercury (Hg) and selenium (Se), as selenite, not only significantly inhibited growth ofA. pullulansbut also affected the composition of produced EPS. Lead (Pb) showed little influence on EPS yield or composition. The interactions of EPS fromA. pullulanswith the tested metals and metalloids depended on the specific element and their concentration. Fluorescence intensity measurements of the EPS showed that the presence of metal(loid)s stimulated the production of extracellular tryptophan-like and aromatic protein-like substances. Examination of fluorescence quenching and calculation of binding constants revealed that the fluorescence quenching process for Hg; arsenic (As), as arsenite; and Pb to EPS were mainly governed by static quenching which resulted in the formation of a stable non-fluorescent complexes between the EPS and metal(loid)s. Se showed no significant interaction with the EPS according to fluorescence quenching. These results provide further understanding of the interactions between metals and metalloids and EPS produced by fungi and their contribution to metal(loid) tolerance

    Formulations of Plant Growth-Promoting Microbes for Field Applications

    Get PDF
    Development of a plant growth-promoting (PGP) microbe needs several steps starting with isolation of a pure culture, screening of its PGP or antagonistic traits by means of different efficacy bioassays performed in vitro, in vivo or in trials under greenhouse and/or field conditions. In order to maximize the potential of an efficient PGP microbe, it is essential to optimize mass multiplication protocols that promote product quality and quantity and a product formulation that enhances bioactivity, preserves shelf life and aids product delivery. Selection of formulation is very crucial as it can determine the success or failure of a PGP microbe. A good carrier material should be able to deliver the right number of viable cells in good physiological conditions, easy to use and economically affordable by the farmers. Several carrier materials have been used in formulation that include peat, talc, charcoal, cellulose powder, farm yard manure, vermicompost and compost, lignite, bagasse and press mud. Each formulation has its advantages and disadvantages but the peat based carrier material is widely used in different part of the world. This chapter gives a comprehensive analysis of different formulations and the quality of inoculants available in the market, with a case study conducted in five-states of India
    corecore