138 research outputs found

    Temperature dependence of plasmonic terahertz absorption in grating-gate gallium-nitride transistor structures

    Get PDF
    Strong plasmon resonances have been observed in the terahertz transmission spectra (1-5 THz) of large-area slit-grating-gate AlGaN/GaN-based high-electron-mobility transistor (HEMT) structures at temperatures from 10 to 170 K. The resonance frequencies correspond to the excitation of plasmons with wave vectors equal to the reciprocal lattice vectors of the metal grating, which serves both as a gate electrode for the HEMT and a coupler between plasmons and incident terahertz radiation. Wide tunability of the resonances by the applied gate voltage demonstrates potential of these devices for terahertz applications

    Theory of laser ion acceleration from a foil target of nanometers

    Full text link
    A theory for laser ion acceleration is presented to evaluate the maximum ion energy in the interaction of ultrahigh contrast (UHC) intense laser with a nanometer-scale foil. In this regime the energy of ions may be directly related to the laser intensity and subsequent electron dynamics. This leads to a simple analytical expression for the ion energy gain under the laser irradiation of thin targets. Significantly, higher energies for thin targets than for thicker targets are predicted. Theory is concretized to the details of recent experiments which may find its way to compare with these results.Comment: 22 pages 7 figures. will be submitted to NJ

    Unlimited Energy Gain in the Laser-Driven Radiation Pressure Dominant Acceleration of Ions

    Full text link
    The energy of the ions accelerated by an intense electromagnetic wave in the radiation pressure dominated regime can be greatly enhanced due to a transverse expansion of a thin target. The expansion decreases the number of accelerated ions in the irradiated region increasing the energy and the longitudinal velocity of remaining ions. In the relativistic limit, the ions become phase-locked with respect to the electromagnetic wave resulting in the unlimited ion energy gain. This effect and the use of optimal laser pulse shape provide a new approach for great enhancing the energy of laser accelerated ions.Comment: 30 pages, 9 figures, misprints correcte

    Metadevice for intensity modulation with sub-wavelength spatial resolution

    No full text
    Effectively continuous control over propagation of a beam of light requires light modulation with pixelation that is smaller than the optical wavelength. Here we propose a spatial intensity modulator with sub-wavelength resolution in one dimension. The metadevice combines recent advances in reconfigurable nanomembrane metamaterials and coherent all-optical control of metasurfaces. It uses nanomechanical actuation of metasurface absorber strips placed near a mirror in order to control their interaction with light from perfect absorption to negligible loss, promising a path towards dynamic beam diffraction, light focusing and holography without unwanted diffraction artefacts

    Colorization and Automated Segmentation of Human T2 MR Brain Images for Characterization of Soft Tissues

    Get PDF
    Characterization of tissues like brain by using magnetic resonance (MR) images and colorization of the gray scale image has been reported in the literature, along with the advantages and drawbacks. Here, we present two independent methods; (i) a novel colorization method to underscore the variability in brain MR images, indicative of the underlying physical density of bio tissue, (ii) a segmentation method (both hard and soft segmentation) to characterize gray brain MR images. The segmented images are then transformed into color using the above-mentioned colorization method, yielding promising results for manual tracing. Our color transformation incorporates the voxel classification by matching the luminance of voxels of the source MR image and provided color image by measuring the distance between them. The segmentation method is based on single-phase clustering for 2D and 3D image segmentation with a new auto centroid selection method, which divides the image into three distinct regions (gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) using prior anatomical knowledge). Results have been successfully validated on human T2-weighted (T2) brain MR images. The proposed method can be potentially applied to gray-scale images from other imaging modalities, in bringing out additional diagnostic tissue information contained in the colorized image processing approach as described

    Wavefront shaping with disorder-engineered metasurfaces

    Get PDF
    Recently, wavefront shaping with disordered media has demonstrated optical manipulation capabilities beyond those of conventional optics, including extended volume, aberration-free focusing and subwavelength focusing. However, translating these capabilities to useful applications has remained challenging as the input–output characteristics of the disordered media (P variables) need to be exhaustively determined via O(P) measurements. Here, we propose a paradigm shift where the disorder is specifically designed so its exact input–output characteristics are known a priori and can be used with only a few alignment steps. We implement this concept with a disorder-engineered metasurface, which exhibits additional unique features for wavefront shaping such as a large optical memory effect range in combination with a wide angular scattering range, excellent stability, and a tailorable angular scattering profile. Using this designed metasurface with wavefront shaping, we demonstrate high numerical aperture (NA > 0.5) focusing and fluorescence imaging with an estimated ~2.2 × 10^8 addressable points in an ~8 mm field of view

    Relativistic Laser-Matter Interaction and Relativistic Laboratory Astrophysics

    Full text link
    The paper is devoted to the prospects of using the laser radiation interaction with plasmas in the laboratory relativistic astrophysics context. We discuss the dimensionless parameters characterizing the processes in the laser and astrophysical plasmas and emphasize a similarity between the laser and astrophysical plasmas in the ultrarelativistic energy limit. In particular, we address basic mechanisms of the charged particle acceleration, the collisionless shock wave and magnetic reconnection and vortex dynamics properties relevant to the problem of ultrarelativistic particle acceleration.Comment: 58 pages, 19 figure

    The creatine kinase system and pleiotropic effects of creatine

    Get PDF
    The pleiotropic effects of creatine (Cr) are based mostly on the functions of the enzyme creatine kinase (CK) and its high-energy product phosphocreatine (PCr). Multidisciplinary studies have established molecular, cellular, organ and somatic functions of the CK/PCr system, in particular for cells and tissues with high and intermittent energy fluctuations. These studies include tissue-specific expression and subcellular localization of CK isoforms, high-resolution molecular structures and structure–function relationships, transgenic CK abrogation and reverse genetic approaches. Three energy-related physiological principles emerge, namely that the CK/PCr systems functions as (a) an immediately available temporal energy buffer, (b) a spatial energy buffer or intracellular energy transport system (the CK/PCr energy shuttle or circuit) and (c) a metabolic regulator. The CK/PCr energy shuttle connects sites of ATP production (glycolysis and mitochondrial oxidative phosphorylation) with subcellular sites of ATP utilization (ATPases). Thus, diffusion limitations of ADP and ATP are overcome by PCr/Cr shuttling, as most clearly seen in polar cells such as spermatozoa, retina photoreceptor cells and sensory hair bundles of the inner ear. The CK/PCr system relies on the close exchange of substrates and products between CK isoforms and ATP-generating or -consuming processes. Mitochondrial CK in the mitochondrial outer compartment, for example, is tightly coupled to ATP export via adenine nucleotide transporter or carrier (ANT) and thus ATP-synthesis and respiratory chain activity, releasing PCr into the cytosol. This coupling also reduces formation of reactive oxygen species (ROS) and inhibits mitochondrial permeability transition, an early event in apoptosis. Cr itself may also act as a direct and/or indirect anti-oxidant, while PCr can interact with and protect cellular membranes. Collectively, these factors may well explain the beneficial effects of Cr supplementation. The stimulating effects of Cr for muscle and bone growth and maintenance, and especially in neuroprotection, are now recognized and the first clinical studies are underway. Novel socio-economically relevant applications of Cr supplementation are emerging, e.g. for senior people, intensive care units and dialysis patients, who are notoriously Cr-depleted. Also, Cr will likely be beneficial for the healthy development of premature infants, who after separation from the placenta depend on external Cr. Cr supplementation of pregnant and lactating women, as well as of babies and infants are likely to be of benefit for child development. Last but not least, Cr harbours a global ecological potential as an additive for animal feed, replacing meat- and fish meal for animal (poultry and swine) and fish aqua farming. This may help to alleviate human starvation and at the same time prevent over-fishing of oceans
    corecore