14 research outputs found

    A Framework for UML-Based Component-Based Design and Code Generation for Reactive Systems

    No full text
    International audienceOne way to design complex systems is to use an event-driven architecture. Model Driven Engineering (MDE) promotes the use of different abstract concepts, among which are the UML state machine, composite structure elements and their associated visualizations, as a powerful means to design such an architecture. MDE seeks to increase software productivity by automatically generating executable code from state machines and composite structures. To this end, a code generation approach in MDE should support all model elements used at the design level. However, existing code generation approaches and tools are still limited, especially when considering concurrency, event types, and pseudo states such as history and junction. Furthermore, in the literature, the combination of component-based design and UML state machines is supported by only a few existing approaches. This paper explores this combination and provides code generation patterns and framework-based tooling support for the combination and complete and efficient code generation from UML state machines. We extend a well-known state machine code generation pattern with concurrency support. In order to verify the semantics of generated code, we execute code generated by the proposed framework with a set of state-machine examples that are part of a test-suite described in the recent OMG standard Precise Semantics Of State Machine. The traced execution results comply with the standard and are a good hint that the execution is semantically correct. Regarding code efficiency, the code generated by our approach supports multi-thread-based concurrency, and the size of the generated code is smaller compared to considered approaches. Moreover, we demonstrate the practicality, feasibility, and scalability of the proposed approach with two case studies

    Activation of the Regulatory T-Cell/Indoleamine 2,3-Dioxygenase Axis Reduces Vascular Inflammation and Atherosclerosis in Hyperlipidemic Mice

    No full text
    T-cell activation is characteristic during the development of atherosclerosis. While overall T-cell responses have been implicated in disease acceleration, regulatory T cells (Tregs) exhibit atheroprotective effects. The expression of the enzyme indoleamine 2,3-dioxygenase-1 (IDO1), which catalyzes the degradation of tryptophan (Trp) along the kynurenine pathway, has been implicated in the induction and expansion of Treg populations. Hence, Tregs can reciprocally promote IDO1 expression in dendritic cells (DCs) via reverse signaling mechanisms during antigen presentation. In this study, we hypothesize that triggering the “Treg/IDO axis” in the artery wall is atheroprotective. We show that apolipoprotein B100-pulsed tumor growth factor beta 2-treated tolerogenic DCs promote de novo FoxP3+ Treg expansion in vivo. This local increase in Treg numbers is associated with increased vascular IDO1 expression and a robust reduction in the atherosclerotic burden. Using human primary cell cultures, we show for the first time that IDO1 expression and activity can be regulated by cytotoxic T-lymphocyte associated protein-4, which is a constitutive molecule expressed and secreted by Tregs, in smooth muscle cells, endothelial cells, and macrophages. Altogether, our data suggest that Tregs and IDO1-mediated Trp metabolism can mutually regulate one another in the vessel wall to promote vascular tolerance mechanisms that limit inflammation and atherosclerosis

    Towards Reasoning About Pivoting in Startups and Large Enterprises with i

    No full text
    Part 1: Regular PapersInternational audienceMany start-ups fail, or are abandoned, due to flawed reasoning underpinning their products, business models, and engines of growth. Similarly, many strategic initiatives in large enterprises fail, or are decommissioned, because they are predicated on faulty assumptions that do not comport with reality. The lean start-up and lean enterprise approaches encourage decision makers to test their fundamental hypotheses and effect strategic pivots to identify new and superior fundamental hypotheses. This paper presents a model-based approach to support reasoning about strategic pivoting. It outlines key constructs from the i* modeling language that can be used to model various pivot types. Experience with a real-life application provided a preliminary validation about the benefits of modeling to support pivoting. The case study demonstrated how this approach can be used to compare alternatives for pivoting as well as to generate further ideas for alternative pivots

    Legislative Documents

    No full text
    Also, variously referred to as: Senate bills; Senate documents; Senate legislative documents; legislative documents; and General Court documents

    Image_3_Activation of the Regulatory T-Cell/Indoleamine 2,3-Dioxygenase Axis Reduces Vascular Inflammation and Atherosclerosis in Hyperlipidemic Mice.PDF

    No full text
    <p>T-cell activation is characteristic during the development of atherosclerosis. While overall T-cell responses have been implicated in disease acceleration, regulatory T cells (Tregs) exhibit atheroprotective effects. The expression of the enzyme indoleamine 2,3-dioxygenase-1 (IDO1), which catalyzes the degradation of tryptophan (Trp) along the kynurenine pathway, has been implicated in the induction and expansion of Treg populations. Hence, Tregs can reciprocally promote IDO1 expression in dendritic cells (DCs) via reverse signaling mechanisms during antigen presentation. In this study, we hypothesize that triggering the “Treg/IDO axis” in the artery wall is atheroprotective. We show that apolipoprotein B100-pulsed tumor growth factor beta 2-treated tolerogenic DCs promote de novo FoxP3<sup>+</sup> Treg expansion in vivo. This local increase in Treg numbers is associated with increased vascular IDO1 expression and a robust reduction in the atherosclerotic burden. Using human primary cell cultures, we show for the first time that IDO1 expression and activity can be regulated by cytotoxic T-lymphocyte associated protein-4, which is a constitutive molecule expressed and secreted by Tregs, in smooth muscle cells, endothelial cells, and macrophages. Altogether, our data suggest that Tregs and IDO1-mediated Trp metabolism can mutually regulate one another in the vessel wall to promote vascular tolerance mechanisms that limit inflammation and atherosclerosis.</p

    Image_1_Activation of the Regulatory T-Cell/Indoleamine 2,3-Dioxygenase Axis Reduces Vascular Inflammation and Atherosclerosis in Hyperlipidemic Mice.PDF

    No full text
    <p>T-cell activation is characteristic during the development of atherosclerosis. While overall T-cell responses have been implicated in disease acceleration, regulatory T cells (Tregs) exhibit atheroprotective effects. The expression of the enzyme indoleamine 2,3-dioxygenase-1 (IDO1), which catalyzes the degradation of tryptophan (Trp) along the kynurenine pathway, has been implicated in the induction and expansion of Treg populations. Hence, Tregs can reciprocally promote IDO1 expression in dendritic cells (DCs) via reverse signaling mechanisms during antigen presentation. In this study, we hypothesize that triggering the “Treg/IDO axis” in the artery wall is atheroprotective. We show that apolipoprotein B100-pulsed tumor growth factor beta 2-treated tolerogenic DCs promote de novo FoxP3<sup>+</sup> Treg expansion in vivo. This local increase in Treg numbers is associated with increased vascular IDO1 expression and a robust reduction in the atherosclerotic burden. Using human primary cell cultures, we show for the first time that IDO1 expression and activity can be regulated by cytotoxic T-lymphocyte associated protein-4, which is a constitutive molecule expressed and secreted by Tregs, in smooth muscle cells, endothelial cells, and macrophages. Altogether, our data suggest that Tregs and IDO1-mediated Trp metabolism can mutually regulate one another in the vessel wall to promote vascular tolerance mechanisms that limit inflammation and atherosclerosis.</p

    Image_6_Activation of the Regulatory T-Cell/Indoleamine 2,3-Dioxygenase Axis Reduces Vascular Inflammation and Atherosclerosis in Hyperlipidemic Mice.PDF

    No full text
    <p>T-cell activation is characteristic during the development of atherosclerosis. While overall T-cell responses have been implicated in disease acceleration, regulatory T cells (Tregs) exhibit atheroprotective effects. The expression of the enzyme indoleamine 2,3-dioxygenase-1 (IDO1), which catalyzes the degradation of tryptophan (Trp) along the kynurenine pathway, has been implicated in the induction and expansion of Treg populations. Hence, Tregs can reciprocally promote IDO1 expression in dendritic cells (DCs) via reverse signaling mechanisms during antigen presentation. In this study, we hypothesize that triggering the “Treg/IDO axis” in the artery wall is atheroprotective. We show that apolipoprotein B100-pulsed tumor growth factor beta 2-treated tolerogenic DCs promote de novo FoxP3<sup>+</sup> Treg expansion in vivo. This local increase in Treg numbers is associated with increased vascular IDO1 expression and a robust reduction in the atherosclerotic burden. Using human primary cell cultures, we show for the first time that IDO1 expression and activity can be regulated by cytotoxic T-lymphocyte associated protein-4, which is a constitutive molecule expressed and secreted by Tregs, in smooth muscle cells, endothelial cells, and macrophages. Altogether, our data suggest that Tregs and IDO1-mediated Trp metabolism can mutually regulate one another in the vessel wall to promote vascular tolerance mechanisms that limit inflammation and atherosclerosis.</p
    corecore