17 research outputs found

    Genetic Identification of Separase Regulators in Caenorhabditis elegans

    Get PDF
    Separase is a highly conserved protease required for chromosome segregation. Although observations that separase also regulates membrane trafficking events have been made, it is still not clear how separase achieves this function. Here, we present an extensive ENU mutagenesis suppressor screen aimed at identifying suppressors of sep-1(e2406), a temperature-sensitive maternal effect embryonic lethal separase mutant that primarily attenuates membrane trafficking rather than chromosome segregation. We screened nearly a million haploid genomes and isolated 68 suppressed lines. We identified 14 independent intragenic sep-1(e2406) suppressed lines. These intragenic alleles map to seven SEP-1 residues within the N-terminus, compensating for the original mutation within the poorly conserved N-terminal domain. Interestingly, 47 of the suppressed lines have novel mutations throughout the entire coding region of the pph-5 phosphatase, indicating that this is an important regulator of separase. We also found that a mutation near the MEEVD motif of HSP-90, which binds and activates PPH-5, also rescues sep-1(e2406) mutants. Finally, we identified six potentially novel suppressor lines that fall into five complementation groups. These new alleles provide the opportunity to more exhaustively investigate the regulation and function of separase

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology

    D3R Grand Challenge 3: Blind Prediction of Protein-Ligand Poses and Affinity Rankings

    No full text
    The Drug Design Data Resource aims to test and advance the state of the art in protein-ligand modeling, by holding community-wide blinded, prediction challenges. Here, we report on our third major round, Grand Challenge 3 (GC3). Held 2017-2018, GC3 centered on the protein Cathepsin S and the kinases VEGFR2, JAK2, p38-α, TIE2, and ABL1; and included both pose- prediction and affinity-ranking components. GC3 was structured much like the prior challenges GC2015 and GC2. First, Stage 1 tested pose prediction and affinity ranking methods; then all available crystal structures were released, and Stage 2 tested only affinity rankings, now in the context of the available structures. Unique to GC3 was the addition of a Stage 1b self-docking sub-challenge, in which the protein coordinates from all of the co-crystal structures used in the cross-docking challenge were released, and participants were asked to predict the pose of CatS ligands using these newly released structures. We provide an overview of the outcomes and discuss insights into trends and best-practices.</div

    D3R Grand Challenge 3: Blind Prediction of Protein-Ligand Poses and Affinity Rankings

    No full text
    <div><div><div><p>The Drug Design Data Resource aims to test and advance the state of the art in protein-ligand modeling, by holding community-wide blinded, prediction challenges. Here, we report on our third major round, Grand Challenge 3 (GC3). Held 2017-2018, GC3 centered on the protein Cathepsin S and the kinases VEGFR2, JAK2, p38-α, TIE2, and ABL1; and included both pose- prediction and affinity-ranking components. GC3 was structured much like the prior challenges GC2015 and GC2. First, Stage 1 tested pose prediction and affinity ranking methods; then all available crystal structures were released, and Stage 2 tested only affinity rankings, now in the context of the available structures. Unique to GC3 was the addition of a Stage 1b self-docking sub-challenge, in which the protein coordinates from all of the co-crystal structures used in the cross-docking challenge were released, and participants were asked to predict the pose of CatS ligands using these newly released structures. We provide an overview of the outcomes and discuss insights into trends and best-practices.</p></div></div></div
    corecore