10,545 research outputs found

    Quantum entanglement distribution with 810 nm photons through telecom fibers

    Full text link
    We demonstrate the distribution of polarization entangled photons of wavelength 810 nm through standard telecom fibers. This technique allows quantum communication protocols to be performed over established fiber infrastructure, and makes use of the smaller and better performing setups available around 800 nm, as compared to those which use telecom wavelengths around 1550 nm. We examine the excitation and subsequent quenching of higher-order spatial modes in telecom fibers up to 6 km in length, and perform a distribution of high quality entanglement (visibility 95.6%). Finally, we demonstrate quantum key distribution using entangled 810 nm photons over a 4.4 km long installed telecom fiber link.Comment: 5 pages, 5 figures, 1 tabl

    Properties of Pb(Zr,Ti)O3_3 ultrathin films under stress-free and open-circuit electrical boundary conditions

    Full text link
    A first-principles-based scheme is developed to simulate properties of (001) PbO-terminated Pb(Zr1−x_{1-x}Tix_{x})O3_3 thin films that are under stress-free and open-circuit boundary conditions. Their low-temperature spontaneous polarization never vanishes down to the minimal thickness, and continuously rotates between the in-plane and directions when varying the Ti composition around x=0.50. Such rotation dramatically enhances piezoelectricity and dielectricity. Furthermore, the order of some phase transitions changes when going from bulk to thin films.Comment: 11 pages, 3 figure

    Effect of spin-orbit coupling on the excitation spectrum of Andreev billiards

    Full text link
    We consider the effect of spin-orbit coupling on the low energy excitation spectrum of an Andreev billiard (a quantum dot weakly coupled to a superconductor), using a dynamical numerical model (the spin Andreev map). Three effects of spin-orbit coupling are obtained in our simulations: In zero magnetic field: (1) the narrowing of the distribution of the excitation gap; (2) the appearance of oscillations in the average density of states. In strong magnetic field: (3) the appearance of a peak in the average density of states at zero energy. All three effects have been predicted by random-matrix theory.Comment: 5 pages, 4 figure

    Maternal plasma DHA levels increase prior to 29 days post-LH surge in women undergoing frozen embryo transfer: a prospective, observational study of human pregnancy

    Get PDF
    Context: Docosahexaenoic acid (DHA) is an important fatty acid required for neurological development but its importance during early fetal neurological organogenesis is unknown. Objective: To assess plasma fatty acid changes in early pregnancy in women undergoing natural cycle-frozen embryo transfer as a means of achieving accurately-timed periconceptual sampling. Design: Women undergoing frozen embryo transfer were recruited and serial fasting blood samples were taken pre-luteinising hormone (LH) surge, and at days 18, 29 and 45 post-LH surge and fatty acids were analysed using gas chromatography. Setting: Assisted Conception Unit, Glasgow Royal Infirmary, Scotland Main outcome measures: Plasma fatty acid concentrations, influence of twin pregnancies on DHA plasma concentration. Results: In pregnant women, there was a rapid, early increase in the maternal rate of change of plasma DHA concentration observed by 29 days post-LH surge (mean±SD, from 0.1±1.3 to 1.6±2.9 nmol DHA per mL plasma per day). This early pressure to increase plasma DHA concentration was further emphasised in twin pregnancies where the increase in DHA concentration over 45 days was two-fold higher than in singleton pregnancies (mean±SD increase, 74±39 nmol/mL versus 36±40 nmol/mL). An index of delta-6 desaturase activity increased 30% and positively correlated with the rate of change of DHA concentration between day 18 and 29-post LH surge (R-squared adjusted = 41%, P=0.0002). DHA was the only fatty acid with a continual accelerated increase in plasma concentration and a positive incremental area under the curve (mean±SD, 632±911 nmol/mL x day) over the first 45 days of gestation. Conclusions: An increase in maternal plasma DHA concentration is initiated in human pregnancy prior to neural tube closure which occurs at 28 days' gestation

    Nudging Students Beyond the FAFSA: The Impact of University Outreach on Financial Aid Behaviors and Outcomes

    Get PDF
    A growing body of research indicates that proactive outreach from high schools and college access organizations about college preparation tasks, and specifically focusing on completing the Free Application for Federal Student Aid (FAFSA), results in increased college enrollment. Comparatively less attention has been paid to the role of colleges and universities in this outreach and outreach relating to additional financial aid barriers that students face while applying to college, such as the CSS PROFILE form. In this article we investigated, through an inter-university collaboration, the effect of sending targeted, semi-personalized text messages to students during the college application process about important financial aid deadlines, making salient the specific forms required and prompting students to plan specific times to complete these tasks. The intervention increased CSS PROFILE filing by 3.1-4.3 percentage points, where the estimates and their significance varied depending on the comparison group. Impacts on student enrollment did not accompany these filing impacts. Results from our collaboration support the idea that colleges and universities have an important role to play in outreach to applicants relating to important financial aid tasks. The paper includes a discussion of the promises and challenges of this outreach with recommendations for practitioners

    Entanglement over global distances via quantum repeaters with satellite links

    Full text link
    We study entanglement creation over global distances based on a quantum repeater architecture that uses low-earth orbit satellites equipped with entangled photon sources, as well as ground stations equipped with quantum non-demolition detectors and quantum memories. We show that this approach allows entanglement creation at viable rates over distances that are inaccessible via direct transmission through optical fibers or even from very distant satellites.Comment: 5+3 pages, 3+2 figure

    Efficient and accurate evaluation of potential energy matrix elements for quantum dynamics using Gaussian process regression

    Get PDF
    Solution of the time-dependent Schro ̈dinger equation using a linear combination of basis functions, such as Gaussian wavepackets (GWPs), requires costly evaluation of integrals over the entire potential energy surface (PES) of the system. The standard approach, motivated by computational tractability for direct dynamics, is to approx- imate the PES with a second order Taylor expansion, for example centred at each GWP. In this Article, we propose an alternative method for approximating PES ma- trix elements based on PES interpolation using Gaussian process regression (GPR). Our GPR scheme requires only single-point evaluations of the PES at a limited num- ber of configurations in each time-step; the necessity of performing often-expensive evaluations of the Hessian matrix is completely avoided. In applications to 2-, 5- and 10-dimensional benchmark models describing a tunnelling coordinate coupled non-linearly to a set of harmonic oscillators, we find that our GPR method results in PES matrix elements for which the average error is, in the best case, two orders-of- magnitude smaller and, in the worst case, directly comparable to that determined by any other Taylor expansion method, without requiring additional PES evaluations or Hessian matrices. Given the computational simplicity of GPR, as well as the op- portunities for further refinement of the procedure highlighted herein, we argue that our GPR methodology should replace methods for evaluating PES matrix elements using Taylor expansions in quantum dynamics simulations

    GABRB3 mutations: a new and emerging cause of early infantile epileptic encephalopathy

    Get PDF
    The gamma-aminobutyric acid type A receptor β3 gene (GABRB3) encodes the β3-subunit of the gamma-aminobutyric acid type A (GABAA ) receptor, which mediates inhibitory signalling within the central nervous system. Recently, GABRB3 mutations have been identified in a few patients with infantile spasms and Lennox-Gastaut syndrome. We report the clinical and electrographic features of a novel case of GABRB3-related early-onset epileptic encephalopathy. Our patient presented with neonatal hypotonia and feeding difficulties, then developed pharmacoresistant epileptic encephalopathy, characterized by multiple seizure types from 3 months of age. Electroencephalography demonstrated ictal generalized and interictal multifocal epileptiform abnormalities. Using a SureSelectXT custom multiple gene panel covering 48 early infantile epileptic encephalopathy/developmental delay genes, a novel de novo GABRB3 heterozygous missense mutation, c.860C>T (p.Thr287Ile), was identified and confirmed on Sanger sequencing. GABRB3 is an emerging cause of early-onset epilepsy. Novel genetic technologies, such as whole-exome/genome sequencing and multiple gene panels, will undoubtedly identify further cases, allowing more detailed electroclinical delineation of the GABRB3-related genotypic and phenotypic spectra
    • …
    corecore